Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.16484
Cited By
Towards a Better Theoretical Understanding of Independent Subnetwork Training
28 June 2023
Egor Shulgin
Peter Richtárik
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards a Better Theoretical Understanding of Independent Subnetwork Training"
14 / 14 papers shown
Title
Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout
Chen Dun
Mirian Hipolito Garcia
C. Jermaine
Dimitrios Dimitriadis
Anastasios Kyrillidis
52
20
0
28 Oct 2022
EF21-P and Friends: Improved Theoretical Communication Complexity for Distributed Optimization with Bidirectional Compression
Kaja Gruntkowska
A. Tyurin
Peter Richtárik
38
21
0
30 Sep 2022
Minibatch Stochastic Three Points Method for Unconstrained Smooth Minimization
Soumia Boucherouite
Grigory Malinovsky
Peter Richtárik
El Houcine Bergou
16
3
0
16 Sep 2022
Federated Pruning: Improving Neural Network Efficiency with Federated Learning
Rongmei Lin
Yonghui Xiao
Tien-Ju Yang
Ding Zhao
Li Xiong
Giovanni Motta
Franccoise Beaufays
FedML
23
12
0
14 Sep 2022
FL_PyTorch: optimization research simulator for federated learning
Konstantin Burlachenko
Samuel Horváth
Peter Richtárik
FedML
29
18
0
07 Feb 2022
Optimal Algorithms for Decentralized Stochastic Variational Inequalities
D. Kovalev
Aleksandr Beznosikov
Abdurakhmon Sadiev
Michael Persiianov
Peter Richtárik
Alexander Gasnikov
33
34
0
06 Feb 2022
Permutation Compressors for Provably Faster Distributed Nonconvex Optimization
Rafal Szlendak
A. Tyurin
Peter Richtárik
115
35
0
07 Oct 2021
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
44
44
0
07 Oct 2021
Federated Dropout -- A Simple Approach for Enabling Federated Learning on Resource Constrained Devices
Dingzhu Wen
Ki-Jun Jeon
Kaibin Huang
FedML
68
90
0
30 Sep 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
173
411
0
14 Jul 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
176
267
0
26 Feb 2021
Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization
Samuel Horváth
Lihua Lei
Peter Richtárik
Michael I. Jordan
55
30
0
13 Feb 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
243
1,817
0
17 Sep 2019
New Convergence Aspects of Stochastic Gradient Algorithms
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
K. Scheinberg
Martin Takáč
Marten van Dijk
18
65
0
10 Nov 2018
1