ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.17439
126
187
v1v2 (latest)

Provable Robust Watermarking for AI-Generated Text

30 June 2023
Xuandong Zhao
P. Ananth
Lei Li
Yu-Xiang Wang
    WaLM
ArXiv (abs)PDFHTMLGithub (32★)
Abstract

As AI-generated text increasingly resembles human-written content, the ability to detect machine-generated text becomes crucial. To address this challenge, we present GPTWatermark, a robust and high-quality solution designed to ascertain whether a piece of text originates from a specific model. Our approach extends existing watermarking strategies and employs a fixed group design to enhance robustness against editing and paraphrasing attacks. We show that our watermarked language model enjoys strong provable guarantees on generation quality, correctness in detection, and security against evasion attacks. Experimental results on various large language models (LLMs) and diverse datasets demonstrate that our method achieves superior detection accuracy and comparable generation quality in perplexity, thus promoting the responsible use of LLMs.

View on arXiv
Comments on this paper