Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.17648
Cited By
Enhancing training of physics-informed neural networks using domain-decomposition based preconditioning strategies
30 June 2023
Alena Kopanicáková
Hardik Kothari
George Karniadakis
Rolf Krause
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Enhancing training of physics-informed neural networks using domain-decomposition based preconditioning strategies"
14 / 14 papers shown
Title
A Natural Primal-Dual Hybrid Gradient Method for Adversarial Neural Network Training on Solving Partial Differential Equations
Shu Liu
Stanley Osher
Wuchen Li
26
0
0
09 Nov 2024
Learning a Neural Solver for Parametric PDE to Enhance Physics-Informed Methods
Lise Le Boudec
Emmanuel de Bezenac
Louis Serrano
Ramon Daniel Regueiro-Espino
Yuan Yin
Patrick Gallinari
AI4CE
30
2
0
09 Oct 2024
A Nonoverlapping Domain Decomposition Method for Extreme Learning Machines: Elliptic Problems
Chang-Ock Lee
Youngkyu Lee
Byungeun Ryoo
36
3
0
22 Jun 2024
Two-level overlapping additive Schwarz preconditioner for training scientific machine learning applications
Youngkyu Lee
Alena Kopanicáková
George Karniadakis
AI4CE
33
0
0
16 Jun 2024
Initialization-enhanced Physics-Informed Neural Network with Domain Decomposition (IDPINN)
Chenhao Si
Ming Yan
AI4CE
PINN
33
3
0
05 Jun 2024
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
30
6
0
07 May 2024
Learning in PINNs: Phase transition, total diffusion, and generalization
Sokratis J. Anagnostopoulos
Juan Diego Toscano
Nikolaos Stergiopulos
George Karniadakis
24
10
0
27 Mar 2024
Machine learning and domain decomposition methods -- a survey
A. Klawonn
M. Lanser
J. Weber
AI4CE
16
7
0
21 Dec 2023
Parallel Trust-Region Approaches in Neural Network Training: Beyond Traditional Methods
Ken Trotti
Samuel A. Cruz Alegría
Alena Kopanicáková
Rolf Krause
16
0
0
21 Dec 2023
An operator preconditioning perspective on training in physics-informed machine learning
Tim De Ryck
Florent Bonnet
Siddhartha Mishra
Emmanuel de Bezenac
AI4CE
39
14
0
09 Oct 2023
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
37
207
0
16 Jul 2021
Globally Convergent Multilevel Training of Deep Residual Networks
Alena Kopanicáková
Rolf Krause
22
15
0
15 Jul 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
98
272
0
20 Apr 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
489
0
09 Feb 2021
1