ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.00285
  4. Cited By
Assembled-OpenML: Creating Efficient Benchmarks for Ensembles in AutoML
  with OpenML

Assembled-OpenML: Creating Efficient Benchmarks for Ensembles in AutoML with OpenML

1 July 2023
Lennart Purucker
Joeran Beel
    MoE
ArXiv (abs)PDFHTML

Papers citing "Assembled-OpenML: Creating Efficient Benchmarks for Ensembles in AutoML with OpenML"

5 / 5 papers shown
Title
Ensembling Finetuned Language Models for Text Classification
Ensembling Finetuned Language Models for Text Classification
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
73
0
0
25 Oct 2024
Regularized Neural Ensemblers
Regularized Neural Ensemblers
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
UQCV
95
0
0
06 Oct 2024
TabRepo: A Large Scale Repository of Tabular Model Evaluations and its
  AutoML Applications
TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications
David Salinas
Nick Erickson
100
13
0
06 Nov 2023
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc
  Ensemble Selection in AutoML
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML
Lennart Purucker
Lennart Schneider
Marie Anastacio
Joeran Beel
B. Bischl
Holger Hoos
86
4
0
17 Jul 2023
CMA-ES for Post Hoc Ensembling in AutoML: A Great Success and
  Salvageable Failure
CMA-ES for Post Hoc Ensembling in AutoML: A Great Success and Salvageable Failure
Lennart Purucker
Joeran Beel
46
8
0
01 Jul 2023
1