ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.00619
  4. Cited By
Solving Linear Inverse Problems Provably via Posterior Sampling with
  Latent Diffusion Models

Solving Linear Inverse Problems Provably via Posterior Sampling with Latent Diffusion Models

2 July 2023
Litu Rout
Negin Raoof
Giannis Daras
C. Caramanis
A. Dimakis
Sanjay Shakkottai
    DiffM
ArXivPDFHTML

Papers citing "Solving Linear Inverse Problems Provably via Posterior Sampling with Latent Diffusion Models"

22 / 72 papers shown
Title
Listening to the Noise: Blind Denoising with Gibbs Diffusion
Listening to the Noise: Blind Denoising with Gibbs Diffusion
David Heurtel-Depeiges
C. Margossian
Ruben Ohana
Bruno Régaldo-Saint Blancard
DiffM
25
1
0
29 Feb 2024
D-Flow: Differentiating through Flows for Controlled Generation
D-Flow: Differentiating through Flows for Controlled Generation
Heli Ben-Hamu
Omri Puny
Itai Gat
Brian Karrer
Uriel Singer
Y. Lipman
35
23
0
21 Feb 2024
MRPD: Undersampled MRI reconstruction by prompting a large latent
  diffusion model
MRPD: Undersampled MRI reconstruction by prompting a large latent diffusion model
Student Member Ieee Ziqi Gao
F. I. S. Kevin Zhou
MedIm
32
3
0
16 Feb 2024
Consistency Model is an Effective Posterior Sample Approximation for
  Diffusion Inverse Solvers
Consistency Model is an Effective Posterior Sample Approximation for Diffusion Inverse Solvers
Tongda Xu
Ziran Zhu
Jian Li
Dailan He
Yuanyuan Wang
...
Ning Li
Hongwei Qin
Yan Wang
Jingjing Liu
Ya-Qin Zhang
DiffM
30
4
0
09 Feb 2024
You Only Need One Step: Fast Super-Resolution with Stable Diffusion via
  Scale Distillation
You Only Need One Step: Fast Super-Resolution with Stable Diffusion via Scale Distillation
Mehdi Noroozi
Isma Hadji
Brais Martínez
Adrian Bulat
Georgios Tzimiropoulos
24
10
0
30 Jan 2024
Beyond First-Order Tweedie: Solving Inverse Problems using Latent
  Diffusion
Beyond First-Order Tweedie: Solving Inverse Problems using Latent Diffusion
Litu Rout
Yujia Chen
Abhishek Kumar
C. Caramanis
Sanjay Shakkottai
Wen-Sheng Chu
20
32
0
01 Dec 2023
Manifold Preserving Guided Diffusion
Manifold Preserving Guided Diffusion
Yutong He
Naoki Murata
Chieh-Hsin Lai
Yuhta Takida
Toshimitsu Uesaka
...
Wei-Hsiang Liao
Yuki Mitsufuji
J. Zico Kolter
Ruslan Salakhutdinov
Stefano Ermon
DiffM
116
64
0
28 Nov 2023
Regularization by Texts for Latent Diffusion Inverse Solvers
Regularization by Texts for Latent Diffusion Inverse Solvers
Jeongsol Kim
Geon Yeong Park
Hyungjin Chung
Jong Chul Ye
AI4CE
28
14
0
27 Nov 2023
The Missing U for Efficient Diffusion Models
The Missing U for Efficient Diffusion Models
Sergio Calvo-Ordoñez
Chun-Wun Cheng
Jiahao Huang
Lipei Zhang
Guang Yang
Carola-Bibiane Schonlieb
Angelica I Aviles-Rivero
DiffM
25
4
0
31 Oct 2023
Prompt-tuning latent diffusion models for inverse problems
Prompt-tuning latent diffusion models for inverse problems
Hyungjin Chung
Jong Chul Ye
P. Milanfar
M. Delbracio
DiffM
22
40
0
02 Oct 2023
Training-free Linear Image Inverses via Flows
Training-free Linear Image Inverses via Flows
Ashwini Pokle
Matthew Muckley
Ricky T. Q. Chen
Brian Karrer
6
20
0
25 Sep 2023
Adapt and Diffuse: Sample-adaptive Reconstruction via Latent Diffusion
  Models
Adapt and Diffuse: Sample-adaptive Reconstruction via Latent Diffusion Models
Zalan Fabian
Berk Tınaz
Mahdi Soltanolkotabi
DiffM
17
5
0
12 Sep 2023
Solving Inverse Problems with Latent Diffusion Models via Hard Data
  Consistency
Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency
Bowen Song
Soo Min Kwon
Zecheng Zhang
Xinyu Hu
Qing Qu
Liyue Shen
MedIm
25
98
0
16 Jul 2023
Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
  Problems
Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse Problems
Hyungjin Chung
Suhyeon Lee
Jong Chul Ye
DiffM
MedIm
16
62
0
10 Mar 2023
Sampling is as easy as learning the score: theory for diffusion models
  with minimal data assumptions
Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions
Sitan Chen
Sinho Chewi
Jungshian Li
Yuanzhi Li
Adil Salim
Anru R. Zhang
DiffM
123
245
0
22 Sep 2022
Brain Imaging Generation with Latent Diffusion Models
Brain Imaging Generation with Latent Diffusion Models
W. H. Pinaya
Petru-Daniel Tudosiu
J. Dafflon
P. F. D. Costa
Virginia Fernandez
P. Nachev
Sebastien Ourselin
M. Jorge Cardoso
DiffM
MedIm
87
284
0
15 Sep 2022
Soft Diffusion: Score Matching for General Corruptions
Soft Diffusion: Score Matching for General Corruptions
Giannis Daras
M. Delbracio
Hossein Talebi
A. Dimakis
P. Milanfar
DiffM
57
106
0
12 Sep 2022
Denoising Diffusion Restoration Models
Denoising Diffusion Restoration Models
Bahjat Kawar
Michael Elad
Stefano Ermon
Jiaming Song
DiffM
204
774
0
27 Jan 2022
RePaint: Inpainting using Denoising Diffusion Probabilistic Models
RePaint: Inpainting using Denoising Diffusion Probabilistic Models
Andreas Lugmayr
Martin Danelljan
Andrés Romero
F. I. F. Richard Yu
Radu Timofte
Luc Van Gool
DiffM
211
1,353
0
24 Jan 2022
Palette: Image-to-Image Diffusion Models
Palette: Image-to-Image Diffusion Models
Chitwan Saharia
William Chan
Huiwen Chang
Chris A. Lee
Jonathan Ho
Tim Salimans
David J. Fleet
Mohammad Norouzi
DiffM
VLM
325
1,584
0
10 Nov 2021
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
  Generative Models
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
Sachit Menon
Alexandru Damian
Shijia Hu
Nikhil Ravi
Cynthia Rudin
OOD
DiffM
189
539
0
08 Mar 2020
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
262
10,320
0
12 Dec 2018
Previous
12