ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.00750
  4. Cited By
Feasibility of Universal Anomaly Detection without Knowing the
  Abnormality in Medical Images

Feasibility of Universal Anomaly Detection without Knowing the Abnormality in Medical Images

3 July 2023
C. Cui
Yaohong Wang
Shunxing Bao
Yucheng Tang
Ruining Deng
Lucas W. Remedios
Zuhayr Asad
Joseph T. Roland
K. Lau
Qi Liu
Lori A. Coburn
K. Wilson
Bennett A. Landman
Yuankai Huo
    OOD
ArXivPDFHTML

Papers citing "Feasibility of Universal Anomaly Detection without Knowing the Abnormality in Medical Images"

2 / 2 papers shown
Title
Benchmarking the Robustness of Deep Neural Networks to Common
  Corruptions in Digital Pathology
Benchmarking the Robustness of Deep Neural Networks to Common Corruptions in Digital Pathology
Yunlong Zhang
Yuxuan Sun
Honglin Li
S. Zheng
Chenglu Zhu
L. Yang
OOD
54
27
0
30 Jun 2022
Inpainting Transformer for Anomaly Detection
Inpainting Transformer for Anomaly Detection
Jonathan Pirnay
K. Chai
ViT
102
164
0
28 Apr 2021
1