ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.01053
  4. Cited By
ENGAGE: Explanation Guided Data Augmentation for Graph Representation
  Learning

ENGAGE: Explanation Guided Data Augmentation for Graph Representation Learning

3 July 2023
Yucheng Shi
Kaixiong Zhou
Ninghao Liu
ArXivPDFHTML

Papers citing "ENGAGE: Explanation Guided Data Augmentation for Graph Representation Learning"

11 / 11 papers shown
Title
xAI-Drop: Don't Use What You Cannot Explain
xAI-Drop: Don't Use What You Cannot Explain
Vincenzo Marco De Luca
Antonio Longa
Andrea Passerini
Pietro Lio'
40
0
0
29 Jul 2024
Enhancing Size Generalization in Graph Neural Networks through
  Disentangled Representation Learning
Enhancing Size Generalization in Graph Neural Networks through Disentangled Representation Learning
Zheng Huang
Qihui Yang
Dawei Zhou
Yujun Yan
AI4CE
28
2
0
07 Jun 2024
UGMAE: A Unified Framework for Graph Masked Autoencoders
UGMAE: A Unified Framework for Graph Masked Autoencoders
Yijun Tian
Chuxu Zhang
Ziyi Kou
Zheyuan Liu
Xiangliang Zhang
Nitesh V. Chawla
19
1
0
12 Feb 2024
GiGaMAE: Generalizable Graph Masked Autoencoder via Collaborative Latent
  Space Reconstruction
GiGaMAE: Generalizable Graph Masked Autoencoder via Collaborative Latent Space Reconstruction
Yucheng Shi
Yushun Dong
Qiaoyu Tan
Jundong Li
Ninghao Liu
35
24
0
18 Aug 2023
XGBD: Explanation-Guided Graph Backdoor Detection
XGBD: Explanation-Guided Graph Backdoor Detection
Zihan Guan
Mengnan Du
Ninghao Liu
AAML
16
9
0
08 Aug 2023
A Survey of Graph Prompting Methods: Techniques, Applications, and
  Challenges
A Survey of Graph Prompting Methods: Techniques, Applications, and Challenges
Xuansheng Wu
Kaixiong Zhou
Mingchen Sun
Xin Wang
Ninghao Liu
40
12
0
13 Mar 2023
Explaining the Explainers in Graph Neural Networks: a Comparative Study
Explaining the Explainers in Graph Neural Networks: a Comparative Study
Antonio Longa
Steve Azzolin
G. Santin
G. Cencetti
Pietro Lio'
Bruno Lepri
Andrea Passerini
46
27
0
27 Oct 2022
Discovering Invariant Rationales for Graph Neural Networks
Discovering Invariant Rationales for Graph Neural Networks
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
89
222
0
30 Jan 2022
Learning Graph Augmentations to Learn Graph Representations
Learning Graph Augmentations to Learn Graph Representations
Kaveh Hassani
Amir Hosein Khas Ahmadi
43
21
0
24 Jan 2022
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
110
142
0
05 Feb 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
162
590
0
31 Dec 2020
1