ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.01486
  4. Cited By
H-DenseFormer: An Efficient Hybrid Densely Connected Transformer for
  Multimodal Tumor Segmentation

H-DenseFormer: An Efficient Hybrid Densely Connected Transformer for Multimodal Tumor Segmentation

4 July 2023
Jun Shi
Hongyu Kan
Shulan Ruan
Ziqi Zhu
Minfan Zhao
Liang Qiao
Zhaohui Wang
Hong An
Xudong Xue
    ViT
    MedIm
ArXivPDFHTML

Papers citing "H-DenseFormer: An Efficient Hybrid Densely Connected Transformer for Multimodal Tumor Segmentation"

3 / 3 papers shown
Title
Combining CNNs With Transformer for Multimodal 3D MRI Brain Tumor
  Segmentation With Self-Supervised Pretraining
Combining CNNs With Transformer for Multimodal 3D MRI Brain Tumor Segmentation With Self-Supervised Pretraining
Mariia Dobko
Danylo-Ivan Kolinko
Ostap Viniavskyi
Yurii Yelisieiev
ViT
MedIm
15
8
0
15 Oct 2021
MRI Tumor Segmentation with Densely Connected 3D CNN
MRI Tumor Segmentation with Densely Connected 3D CNN
Lele Chen
Yue Wu
Adora M. DSouza
A. Abidin
A. Wismüller
Chenliang Xu
33
119
0
18 Jan 2018
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
255
36,362
0
25 Aug 2016
1