ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.01520
  4. Cited By
LEAT: Towards Robust Deepfake Disruption in Real-World Scenarios via
  Latent Ensemble Attack

LEAT: Towards Robust Deepfake Disruption in Real-World Scenarios via Latent Ensemble Attack

4 July 2023
Joonkyo Shim
H. Yoon
    DiffM
    AAML
ArXivPDFHTML

Papers citing "LEAT: Towards Robust Deepfake Disruption in Real-World Scenarios via Latent Ensemble Attack"

4 / 4 papers shown
Title
Feature Extraction Matters More: Universal Deepfake Disruption through
  Attacking Ensemble Feature Extractors
Feature Extraction Matters More: Universal Deepfake Disruption through Attacking Ensemble Feature Extractors
Long Tang
Dengpan Ye
Zhenhao Lu
Yunming Zhang
Shengshan Hu
Yue Xu
Chuanxi Chen
AAML
37
9
0
01 Mar 2023
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for
  Combating Deepfakes
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes
Hao Huang
Yongtao Wang
Zhaoyu Chen
Yuze Zhang
Yuheng Li
Zhi Tang
Wei Chu
Jingdong Chen
Weisi Lin
K. Ma
AAML
60
90
0
23 May 2021
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
262
10,320
0
12 Dec 2018
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
250
5,830
0
08 Jul 2016
1