ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.03290
  4. Cited By
OmniBoost: Boosting Throughput of Heterogeneous Embedded Devices under
  Multi-DNN Workload

OmniBoost: Boosting Throughput of Heterogeneous Embedded Devices under Multi-DNN Workload

6 July 2023
Andreas Karatzas
Iraklis Anagnostopoulos
ArXivPDFHTML

Papers citing "OmniBoost: Boosting Throughput of Heterogeneous Embedded Devices under Multi-DNN Workload"

3 / 3 papers shown
Title
Optimizing DNN Inference on Multi-Accelerator SoCs at Training-time
Optimizing DNN Inference on Multi-Accelerator SoCs at Training-time
Matteo Risso
Alessio Burrello
Daniele Jahier Pagliari
46
0
0
24 Feb 2025
A Survey and Empirical Evaluation of Parallel Deep Learning Frameworks
A Survey and Empirical Evaluation of Parallel Deep Learning Frameworks
Daniel Nichols
Siddharth Singh
Shuqing Lin
A. Bhatele
OOD
24
9
0
09 Nov 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,572
0
17 Apr 2017
1