ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.08364
  4. Cited By
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc
  Ensemble Selection in AutoML

Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML

17 July 2023
Lennart Purucker
Lennart Schneider
Marie Anastacio
Joeran Beel
B. Bischl
Holger Hoos
ArXivPDFHTML

Papers citing "Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML"

5 / 5 papers shown
Title
Ensembling Finetuned Language Models for Text Classification
Ensembling Finetuned Language Models for Text Classification
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
23
0
0
25 Oct 2024
Dynamic Post-Hoc Neural Ensemblers
Dynamic Post-Hoc Neural Ensemblers
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
UQCV
31
0
0
06 Oct 2024
Hardware Aware Ensemble Selection for Balancing Predictive Accuracy and
  Cost
Hardware Aware Ensemble Selection for Balancing Predictive Accuracy and Cost
Jannis Maier
Felix Möller
Lennart Purucker
34
0
0
05 Aug 2024
Quality-Diversity Optimization: a novel branch of stochastic
  optimization
Quality-Diversity Optimization: a novel branch of stochastic optimization
Konstantinos Chatzilygeroudis
Antoine Cully
Vassilis Vassiliades
Jean-Baptiste Mouret
58
91
0
08 Dec 2020
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data
Nick Erickson
Jonas W. Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alex Smola
LMTD
84
576
0
13 Mar 2020
1