ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.09337
  4. Cited By
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural
  Wavefunctions

Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural Wavefunctions

15 July 2023
Michael Scherbela
Leon Gerard
Philipp Grohs
ArXivPDFHTML

Papers citing "Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural Wavefunctions"

5 / 5 papers shown
Title
Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations
Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations
Nicholas Gao
Stephan Günnemann
33
4
0
23 May 2024
Transferable Neural Wavefunctions for Solids
Transferable Neural Wavefunctions for Solids
Leon Gerard
Michael Scherbela
H. Sutterud
Matthew Foulkes
Philipp Grohs
23
3
0
13 May 2024
On Representing Electronic Wave Functions with Sign Equivariant Neural
  Networks
On Representing Electronic Wave Functions with Sign Equivariant Neural Networks
Nicholas Gao
Stephan Günnemann
18
2
0
08 Mar 2024
Gold-standard solutions to the Schrödinger equation using deep
  learning: How much physics do we need?
Gold-standard solutions to the Schrödinger equation using deep learning: How much physics do we need?
Leon Gerard
Michael Scherbela
P. Marquetand
Philipp Grohs
AI4CE
32
34
0
19 May 2022
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
183
1,218
0
08 Jan 2021
1