Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.09933
Cited By
Spuriosity Didn't Kill the Classifier: Using Invariant Predictions to Harness Spurious Features
19 July 2023
Cian Eastwood
Shashank Singh
Andrei Liviu Nicolicioiu
Marin Vlastelica
Julius von Kügelgen
Bernhard Schölkopf
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Spuriosity Didn't Kill the Classifier: Using Invariant Predictions to Harness Spurious Features"
18 / 18 papers shown
Title
Invariance Pair-Guided Learning: Enhancing Robustness in Neural Networks
Martin Surner
Abdelmajid Khelil
Ludwig Bothmann
OOD
53
0
0
26 Feb 2025
Scalable Out-of-distribution Robustness in the Presence of Unobserved Confounders
Parjanya Prashant
Seyedeh Baharan Khatami
Bruno Ribeiro
Babak Salimi
74
0
0
29 Nov 2024
Adapting to Shifting Correlations with Unlabeled Data Calibration
Minh Le Nguyen
Alan Q. Wang
Heejong Kim
Mert R. Sabuncu
OOD
18
1
0
09 Sep 2024
Spurious Correlations in Concept Drift: Can Explanatory Interaction Help?
Cristiana Lalletti
Stefano Teso
27
1
0
23 Jul 2024
Unifying Invariant and Variant Features for Graph Out-of-Distribution via Probability of Necessity and Sufficiency
Xuexin Chen
Ruichu Cai
Kaitao Zheng
Zhifan Jiang
Zhengting Huang
Zhifeng Hao
Zijian Li
54
0
0
21 Jul 2024
Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation
Amartya Sanyal
Yaxi Hu
Yaodong Yu
Yian Ma
Yixin Wang
Bernhard Schölkopf
OODD
45
1
0
27 Jun 2024
Domain Generalisation via Imprecise Learning
Anurag Singh
Siu Lun Chau
S. Bouabid
Krikamol Muandet
AI4CE
OOD
38
5
0
06 Apr 2024
Spurious Correlations in Machine Learning: A Survey
Wenqian Ye
Guangtao Zheng
Xu Cao
Yunsheng Ma
Aidong Zhang
OOD
AAML
CML
39
33
0
20 Feb 2024
Unifying Invariance and Spuriousity for Graph Out-of-Distribution via Probability of Necessity and Sufficiency
Xuexin Chen
Ruichu Cai
Kaitao Zheng
Zhifan Jiang
Zhengting Huang
Zhifeng Hao
Zijian Li
24
2
0
14 Feb 2024
On Provable Length and Compositional Generalization
Kartik Ahuja
Amin Mansouri
OODD
38
7
0
07 Feb 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
44
2
0
19 Dec 2023
Discovering environments with XRM
Mohammad Pezeshki
Diane Bouchacourt
Mark Ibrahim
Jimuyang Zhang
Pascal Vincent
David Lopez-Paz
43
18
0
28 Sep 2023
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
18
56
0
01 Jun 2023
Invariant and Transportable Representations for Anti-Causal Domain Shifts
Yibo Jiang
Victor Veitch
OOD
123
32
0
04 Jul 2022
If your data distribution shifts, use self-learning
E. Rusak
Steffen Schneider
George Pachitariu
L. Eck
Peter V. Gehler
Oliver Bringmann
Wieland Brendel
Matthias Bethge
VLM
OOD
TTA
77
29
0
27 Apr 2021
Gradient Matching for Domain Generalization
Yuge Shi
Jeffrey S. Seely
Philip H. S. Torr
Siddharth Narayanaswamy
Awni Y. Hannun
Nicolas Usunier
Gabriel Synnaeve
OOD
213
246
0
20 Apr 2021
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
317
11,681
0
09 Mar 2017
1