ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.10774
  4. Cited By
Assessing the Use of AutoML for Data-Driven Software Engineering

Assessing the Use of AutoML for Data-Driven Software Engineering

20 July 2023
Fabio Calefato
L. Quaranta
F. Lanubile
Marcos Kalinowski
ArXivPDFHTML

Papers citing "Assessing the Use of AutoML for Data-Driven Software Engineering"

4 / 4 papers shown
Title
MBL-CPDP: A Multi-objective Bilevel Method for Cross-Project Defect
  Prediction via Automated Machine Learning
MBL-CPDP: A Multi-objective Bilevel Method for Cross-Project Defect Prediction via Automated Machine Learning
Jiaxin Chen
Jinliang Ding
Kay Chen Tan
Jiancheng Qian
Ke Li
33
1
0
10 Nov 2024
Human-Centered AI Product Prototyping with No-Code AutoML: Conceptual
  Framework, Potentials and Limitations
Human-Centered AI Product Prototyping with No-Code AutoML: Conceptual Framework, Potentials and Limitations
Mario Truss
Marc Schmitt
15
1
0
06 Feb 2024
Whither AutoML? Understanding the Role of Automation in Machine Learning
  Workflows
Whither AutoML? Understanding the Role of Automation in Machine Learning Workflows
Doris Xin
Eva Yiwei Wu
D. Lee
Niloufar Salehi
Aditya G. Parameswaran
44
71
0
13 Jan 2021
Human-AI Collaboration in Data Science: Exploring Data Scientists'
  Perceptions of Automated AI
Human-AI Collaboration in Data Science: Exploring Data Scientists' Perceptions of Automated AI
Dakuo Wang
Justin D. Weisz
Michael J. Muller
Parikshit Ram
Werner Geyer
Casey Dugan
Y. Tausczik
Horst Samulowitz
Alexander G. Gray
156
312
0
05 Sep 2019
1