Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.14433
Cited By
ProtoASNet: Dynamic Prototypes for Inherently Interpretable and Uncertainty-Aware Aortic Stenosis Classification in Echocardiography
26 July 2023
H. Vaseli
A. Gu
Ahmadi Amiri
Michael Y. Tsang
A. Fung
Nima Kondori
Armin Saadat
Purang Abolmaesumi
T. Tsang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"ProtoASNet: Dynamic Prototypes for Inherently Interpretable and Uncertainty-Aware Aortic Stenosis Classification in Echocardiography"
6 / 6 papers shown
Title
Uncertainty Quantification for Machine Learning in Healthcare: A Survey
L. J. L. Lopez
Shaza Elsharief
Dhiyaa Al Jorf
Firas Darwish
Congbo Ma
Farah E. Shamout
52
0
0
04 May 2025
Reliable Multi-View Learning with Conformal Prediction for Aortic Stenosis Classification in Echocardiography
A. Gu
Michael Y. Tsang
H. Vaseli
Teresa Tsang
Purang Abolmaesumi
25
2
0
15 Sep 2024
ProtoAL: Interpretable Deep Active Learning with prototypes for medical imaging
Iury B. de A. Santos
André C.P.L.F. de Carvalho
MedIm
22
1
0
06 Apr 2024
Semi-Supervised Multimodal Multi-Instance Learning for Aortic Stenosis Diagnosis
Zhe Huang
Xiaowei Yu
B. Wessler
Michael C. Hughes
27
2
0
09 Mar 2024
Detecting Heart Disease from Multi-View Ultrasound Images via Supervised Attention Multiple Instance Learning
Zhe Huang
B. Wessler
M. C. Hughes
14
3
0
25 May 2023
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
24
76
0
05 Oct 2022
1