ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.03003
  4. Cited By
Cal-SFDA: Source-Free Domain-adaptive Semantic Segmentation with
  Differentiable Expected Calibration Error

Cal-SFDA: Source-Free Domain-adaptive Semantic Segmentation with Differentiable Expected Calibration Error

6 August 2023
Zixin Wang
Yadan Luo
Zhi Chen
Sen Wang
Zi Huang
ArXivPDFHTML

Papers citing "Cal-SFDA: Source-Free Domain-adaptive Semantic Segmentation with Differentiable Expected Calibration Error"

4 / 4 papers shown
Title
Model Adaptation: Historical Contrastive Learning for Unsupervised
  Domain Adaptation without Source Data
Model Adaptation: Historical Contrastive Learning for Unsupervised Domain Adaptation without Source Data
Jiaxing Huang
Dayan Guan
Aoran Xiao
Shijian Lu
145
212
0
07 Oct 2021
Fast Batch Nuclear-norm Maximization and Minimization for Robust Domain
  Adaptation
Fast Batch Nuclear-norm Maximization and Minimization for Robust Domain Adaptation
Shuhao Cui
Shuhui Wang
Junbao Zhuo
Liang Li
Qingming Huang
Qi Tian
55
24
0
13 Jul 2021
Semantics Disentangling for Generalized Zero-Shot Learning
Semantics Disentangling for Generalized Zero-Shot Learning
Zhi Chen
Yadan Luo
Ruihong Qiu
Sen Wang
Zi Huang
Jingjing Li
Zheng-Wei Zhang
72
99
0
20 Jan 2021
Confidence Regularized Self-Training
Confidence Regularized Self-Training
Yang Zou
Zhiding Yu
Xiaofeng Liu
B. Kumar
Jinsong Wang
230
789
0
26 Aug 2019
1