ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.03488
  4. Cited By
No Length Left Behind: Enhancing Knowledge Tracing for Modeling
  Sequences of Excessive or Insufficient Lengths

No Length Left Behind: Enhancing Knowledge Tracing for Modeling Sequences of Excessive or Insufficient Lengths

International Conference on Information and Knowledge Management (CIKM), 2023
7 August 2023
Moyu Zhang
Xinning Zhu
Chun-Xiao Zhang
Feng Pan
Wenchen Qian
Hui Zhao
ArXiv (abs)PDFHTML

Papers citing "No Length Left Behind: Enhancing Knowledge Tracing for Modeling Sequences of Excessive or Insufficient Lengths"

1 / 1 papers shown
Title
SINKT: A Structure-Aware Inductive Knowledge Tracing Model with Large
  Language Model
SINKT: A Structure-Aware Inductive Knowledge Tracing Model with Large Language Model
Lingyue Fu
Hao Guan
Kounianhua Du
Jianghao Lin
Wei Xia
Weinan Zhang
Ruiming Tang
Yasheng Wang
Yong Yu
AI4EdKELMRALM
271
21
0
01 Jul 2024
1