ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.05701
  4. Cited By
Exploring the Potential of World Models for Anomaly Detection in
  Autonomous Driving

Exploring the Potential of World Models for Anomaly Detection in Autonomous Driving

10 August 2023
Daniel Bogdoll
Lukas Bosch
Tim Joseph
Helen Gremmelmaier
Yitian Yang
J. Marius Zöllner
ArXivPDFHTML

Papers citing "Exploring the Potential of World Models for Anomaly Detection in Autonomous Driving"

3 / 3 papers shown
Title
UMAD: Unsupervised Mask-Level Anomaly Detection for Autonomous Driving
UMAD: Unsupervised Mask-Level Anomaly Detection for Autonomous Driving
Daniel Bogdoll
Noël Ollick
Tim Joseph
J. Marius Zöllner
24
1
0
10 Jun 2024
Model-Based Imitation Learning for Urban Driving
Model-Based Imitation Learning for Urban Driving
Anthony Hu
Gianluca Corrado
Nicolas Griffiths
Zak Murez
Corina Gurau
Hudson Yeo
Alex Kendall
R. Cipolla
Jamie Shotton
104
135
0
14 Oct 2022
Description of Corner Cases in Automated Driving: Goals and Challenges
Description of Corner Cases in Automated Driving: Goals and Challenges
Daniel Bogdoll
Jasmin Breitenstein
Florian Heidecker
Maarten Bieshaar
Bernhard Sick
Tim Fingscheidt
J. Marius Zöllner
32
55
0
20 Sep 2021
1