ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.05787
  4. Cited By
Temporally-Adaptive Models for Efficient Video Understanding

Temporally-Adaptive Models for Efficient Video Understanding

10 August 2023
Ziyuan Huang
Shiwei Zhang
Liang Pan
Zhiwu Qing
Yingya Zhang
Ziwei Liu
Marcelo H. Ang
ArXivPDFHTML

Papers citing "Temporally-Adaptive Models for Efficient Video Understanding"

15 / 15 papers shown
Title
VideoLLM: Modeling Video Sequence with Large Language Models
VideoLLM: Modeling Video Sequence with Large Language Models
Guo Chen
Yin-Dong Zheng
Jiahao Wang
Jilan Xu
Yifei Huang
...
Yi Wang
Yali Wang
Yu Qiao
Tong Lu
Limin Wang
MLLM
92
51
0
22 May 2023
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
TAda! Temporally-Adaptive Convolutions for Video Understanding
TAda! Temporally-Adaptive Convolutions for Video Understanding
Ziyuan Huang
Shiwei Zhang
Liang Pan
Zhiwu Qing
Mingqian Tang
Ziwei Liu
M. Ang
35
49
0
12 Oct 2021
ActionCLIP: A New Paradigm for Video Action Recognition
ActionCLIP: A New Paradigm for Video Action Recognition
Mengmeng Wang
Jiazheng Xing
Yong Liu
VLM
149
360
0
17 Sep 2021
Decoupled Dynamic Filter Networks
Decoupled Dynamic Filter Networks
Jingkai Zhou
Varun Jampani
Zhixiong Pi
Qiong Liu
Ming-Hsuan Yang
43
107
0
29 Apr 2021
AdaFuse: Adaptive Temporal Fusion Network for Efficient Action
  Recognition
AdaFuse: Adaptive Temporal Fusion Network for Efficient Action Recognition
Yue Meng
Rameswar Panda
Chung-Ching Lin
P. Sattigeri
Leonid Karlinsky
Kate Saenko
A. Oliva
Rogerio Feris
66
62
0
10 Feb 2021
Is Space-Time Attention All You Need for Video Understanding?
Is Space-Time Attention All You Need for Video Understanding?
Gedas Bertasius
Heng Wang
Lorenzo Torresani
ViT
278
1,939
0
09 Feb 2021
TrackFormer: Multi-Object Tracking with Transformers
TrackFormer: Multi-Object Tracking with Transformers
Tim Meinhardt
A. Kirillov
Laura Leal-Taixe
Christoph Feichtenhofer
VOT
208
732
0
07 Jan 2021
Learning Dynamic Routing for Semantic Segmentation
Learning Dynamic Routing for Semantic Segmentation
Yanwei Li
Lin Song
Yukang Chen
Zeming Li
X. Zhang
Xingang Wang
Jian-jun Sun
SSeg
77
161
0
23 Mar 2020
Dynamic ReLU
Dynamic ReLU
Yinpeng Chen
Xiyang Dai
Mengchen Liu
Dongdong Chen
Lu Yuan
Zicheng Liu
155
157
0
22 Mar 2020
Conditional Convolutions for Instance Segmentation
Conditional Convolutions for Instance Segmentation
Zhi Tian
Chunhua Shen
Hao Chen
ISeg
167
596
0
12 Mar 2020
AdaFrame: Adaptive Frame Selection for Fast Video Recognition
AdaFrame: Adaptive Frame Selection for Fast Video Recognition
Zuxuan Wu
Caiming Xiong
Chih-Yao Ma
R. Socher
L. Davis
110
194
0
29 Nov 2018
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,214
0
17 Apr 2017
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
261
10,106
0
16 Nov 2016
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
243
7,597
0
03 Jul 2012
1