ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.05978
  4. Cited By
CyberForce: A Federated Reinforcement Learning Framework for Malware
  Mitigation

CyberForce: A Federated Reinforcement Learning Framework for Malware Mitigation

11 August 2023
Chao Feng
Alberto Huertas Celdrán
Pedro Miguel Sánchez Sánchez
Jan Kreischer
Jan von der Assen
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
ArXivPDFHTML

Papers citing "CyberForce: A Federated Reinforcement Learning Framework for Malware Mitigation"

3 / 3 papers shown
Title
DART: A Solution for Decentralized Federated Learning Model Robustness
  Analysis
DART: A Solution for Decentralized Federated Learning Model Robustness Analysis
Chao Feng
Alberto Huertas Celdrán
Jan von der Assen
Enrique Tomás Martínez Beltrán
Gérome Bovet
Burkhard Stiller
OOD
AAML
48
8
0
11 Jul 2024
A Lightweight Moving Target Defense Framework for Multi-purpose Malware
  Affecting IoT Devices
A Lightweight Moving Target Defense Framework for Multi-purpose Malware Affecting IoT Devices
Jan von der Assen
Alberto Huertas Celdrán
Pedro Miguel Sánchez Sánchez
Jordan Cedeno
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
13
6
0
14 Oct 2022
Reinforcement Learning for IoT Security: A Comprehensive Survey
Reinforcement Learning for IoT Security: A Comprehensive Survey
Aashma Uprety
D. Rawat
AAML
30
121
0
14 Feb 2021
1