Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.07163
Cited By
HyperSparse Neural Networks: Shifting Exploration to Exploitation through Adaptive Regularization
14 August 2023
Patrick Glandorf
Timo Kaiser
Bodo Rosenhahn
Re-assign community
ArXiv
PDF
HTML
Papers citing
"HyperSparse Neural Networks: Shifting Exploration to Exploitation through Adaptive Regularization"
6 / 6 papers shown
Title
UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model
T. Kaiser
Thomas Norrenbrock
Bodo Rosenhahn
34
0
0
08 May 2025
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Chris Kolb
T. Weber
Bernd Bischl
David Rügamer
93
0
0
04 Feb 2025
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu (Allen) Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
72
46
0
20 Feb 2022
RelTR: Relation Transformer for Scene Graph Generation
Yuren Cong
M. Yang
Bodo Rosenhahn
ViT
70
130
0
27 Jan 2022
Powerpropagation: A sparsity inducing weight reparameterisation
Jonathan Richard Schwarz
Siddhant M. Jayakumar
Razvan Pascanu
P. Latham
Yee Whye Teh
82
54
0
01 Oct 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
128
679
0
31 Jan 2021
1