ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.07163
  4. Cited By
HyperSparse Neural Networks: Shifting Exploration to Exploitation
  through Adaptive Regularization

HyperSparse Neural Networks: Shifting Exploration to Exploitation through Adaptive Regularization

14 August 2023
Patrick Glandorf
Timo Kaiser
Bodo Rosenhahn
ArXivPDFHTML

Papers citing "HyperSparse Neural Networks: Shifting Exploration to Exploitation through Adaptive Regularization"

6 / 6 papers shown
Title
UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model
UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model
T. Kaiser
Thomas Norrenbrock
Bodo Rosenhahn
34
0
0
08 May 2025
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Deep Weight Factorization: Sparse Learning Through the Lens of Artificial Symmetries
Chris Kolb
T. Weber
Bernd Bischl
David Rügamer
93
0
0
04 Feb 2025
Sparsity Winning Twice: Better Robust Generalization from More Efficient
  Training
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu (Allen) Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
72
46
0
20 Feb 2022
RelTR: Relation Transformer for Scene Graph Generation
RelTR: Relation Transformer for Scene Graph Generation
Yuren Cong
M. Yang
Bodo Rosenhahn
ViT
70
130
0
27 Jan 2022
Powerpropagation: A sparsity inducing weight reparameterisation
Powerpropagation: A sparsity inducing weight reparameterisation
Jonathan Richard Schwarz
Siddhant M. Jayakumar
Razvan Pascanu
P. Latham
Yee Whye Teh
82
54
0
01 Oct 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
128
679
0
31 Jan 2021
1