Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.08468
Cited By
An Expert's Guide to Training Physics-informed Neural Networks
16 August 2023
Sifan Wang
Shyam Sankaran
Hanwen Wang
P. Perdikaris
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An Expert's Guide to Training Physics-informed Neural Networks"
18 / 18 papers shown
Title
Physics-informed neural network estimation of active material properties in time-dependent cardiac biomechanical models
Matthias Höfler
Francesco Regazzoni
S. Pagani
Elias Karabelas
Christoph M. Augustin
Gundolf Haase
Gernot Plank
Federica Caforio
17
0
0
06 May 2025
Integration Matters for Learning PDEs with Backwards SDEs
Sungje Park
Stephen Tu
PINN
50
0
0
02 May 2025
Inverse Modeling of Dielectric Response in Time Domain using Physics-Informed Neural Networks
Emir Esenov
Olof Hjortstam
Yuriy Serdyuk
Thomas Hammarström
Christian Häger
17
0
0
28 Apr 2025
Learning and discovering multiple solutions using physics-informed neural networks with random initialization and deep ensemble
Zongren Zou
Zhicheng Wang
George Karniadakis
PINN
AI4CE
65
2
0
08 Mar 2025
Unraveling particle dark matter with Physics-Informed Neural Networks
M.P. Bento
H.B. Câmara
J.F. Seabra
53
0
0
24 Feb 2025
Enhanced physics-informed neural networks (PINNs) for high-order power grid dynamics
Vineet Jagadeesan Nair
PINN
38
0
0
10 Oct 2024
Deep Learning Alternatives of the Kolmogorov Superposition Theorem
Leonardo Ferreira Guilhoto
P. Perdikaris
38
7
0
02 Oct 2024
Astral: training physics-informed neural networks with error majorants
V. Fanaskov
Tianchi Yu
Alexander Rudikov
Ivan V. Oseledets
25
1
0
04 Jun 2024
Polynomial-Augmented Neural Networks (PANNs) with Weak Orthogonality Constraints for Enhanced Function and PDE Approximation
Madison Cooley
Shandian Zhe
Robert M. Kirby
Varun Shankar
54
1
0
04 Jun 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
18
17
0
05 Jan 2024
Random Weight Factorization Improves the Training of Continuous Neural Representations
Sifan Wang
Hanwen Wang
Jacob H. Seidman
P. Perdikaris
21
9
0
03 Oct 2022
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
37
207
0
16 Jul 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
69
220
0
26 Apr 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
489
0
09 Feb 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
131
437
0
18 Dec 2020
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
91
125
0
14 Dec 2020
Multi-scale Deep Neural Network (MscaleDNN) for Solving Poisson-Boltzmann Equation in Complex Domains
Ziqi Liu
Wei Cai
Zhi-Qin John Xu
AI4CE
155
122
0
22 Jul 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
506
0
11 Mar 2020
1