ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.08468
  4. Cited By
An Expert's Guide to Training Physics-informed Neural Networks

An Expert's Guide to Training Physics-informed Neural Networks

16 August 2023
Sifan Wang
Shyam Sankaran
Hanwen Wang
P. Perdikaris
    PINN
ArXivPDFHTML

Papers citing "An Expert's Guide to Training Physics-informed Neural Networks"

18 / 18 papers shown
Title
Physics-informed neural network estimation of active material properties in time-dependent cardiac biomechanical models
Physics-informed neural network estimation of active material properties in time-dependent cardiac biomechanical models
Matthias Höfler
Francesco Regazzoni
S. Pagani
Elias Karabelas
Christoph M. Augustin
Gundolf Haase
Gernot Plank
Federica Caforio
17
0
0
06 May 2025
Integration Matters for Learning PDEs with Backwards SDEs
Integration Matters for Learning PDEs with Backwards SDEs
Sungje Park
Stephen Tu
PINN
50
0
0
02 May 2025
Inverse Modeling of Dielectric Response in Time Domain using Physics-Informed Neural Networks
Inverse Modeling of Dielectric Response in Time Domain using Physics-Informed Neural Networks
Emir Esenov
Olof Hjortstam
Yuriy Serdyuk
Thomas Hammarström
Christian Häger
17
0
0
28 Apr 2025
Learning and discovering multiple solutions using physics-informed neural networks with random initialization and deep ensemble
Zongren Zou
Zhicheng Wang
George Karniadakis
PINN
AI4CE
65
2
0
08 Mar 2025
Unraveling particle dark matter with Physics-Informed Neural Networks
Unraveling particle dark matter with Physics-Informed Neural Networks
M.P. Bento
H.B. Câmara
J.F. Seabra
53
0
0
24 Feb 2025
Enhanced physics-informed neural networks (PINNs) for high-order power
  grid dynamics
Enhanced physics-informed neural networks (PINNs) for high-order power grid dynamics
Vineet Jagadeesan Nair
PINN
38
0
0
10 Oct 2024
Deep Learning Alternatives of the Kolmogorov Superposition Theorem
Deep Learning Alternatives of the Kolmogorov Superposition Theorem
Leonardo Ferreira Guilhoto
P. Perdikaris
38
7
0
02 Oct 2024
Astral: training physics-informed neural networks with error majorants
Astral: training physics-informed neural networks with error majorants
V. Fanaskov
Tianchi Yu
Alexander Rudikov
Ivan V. Oseledets
25
1
0
04 Jun 2024
Polynomial-Augmented Neural Networks (PANNs) with Weak Orthogonality Constraints for Enhanced Function and PDE Approximation
Polynomial-Augmented Neural Networks (PANNs) with Weak Orthogonality Constraints for Enhanced Function and PDE Approximation
Madison Cooley
Shandian Zhe
Robert M. Kirby
Varun Shankar
54
1
0
04 Jun 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
18
17
0
05 Jan 2024
Random Weight Factorization Improves the Training of Continuous Neural
  Representations
Random Weight Factorization Improves the Training of Continuous Neural Representations
Sifan Wang
Hanwen Wang
Jacob H. Seidman
P. Perdikaris
21
9
0
03 Oct 2022
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable
  domain decomposition approach for solving differential equations
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
37
207
0
16 Jul 2021
Efficient training of physics-informed neural networks via importance
  sampling
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
69
220
0
26 Apr 2021
Physics-informed neural networks with hard constraints for inverse
  design
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
489
0
09 Feb 2021
On the eigenvector bias of Fourier feature networks: From regression to
  solving multi-scale PDEs with physics-informed neural networks
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
131
437
0
18 Dec 2020
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
91
125
0
14 Dec 2020
Multi-scale Deep Neural Network (MscaleDNN) for Solving
  Poisson-Boltzmann Equation in Complex Domains
Multi-scale Deep Neural Network (MscaleDNN) for Solving Poisson-Boltzmann Equation in Complex Domains
Ziqi Liu
Wei Cai
Zhi-Qin John Xu
AI4CE
155
122
0
22 Jul 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain
  Decomposition
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
506
0
11 Mar 2020
1