ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.08468
  4. Cited By
An Expert's Guide to Training Physics-informed Neural Networks

An Expert's Guide to Training Physics-informed Neural Networks

16 August 2023
Sizhuang He
Shyam Sankaran
Hanwen Wang
P. Perdikaris
    PINN
ArXiv (abs)PDFHTML

Papers citing "An Expert's Guide to Training Physics-informed Neural Networks"

50 / 68 papers shown
Spectral Bottleneck in Sinusoidal Representation Networks: Noise is All You Need
Spectral Bottleneck in Sinusoidal Representation Networks: Noise is All You Need
Hemanth Chandravamsi
Dhanush V. Shenoy
Itay Zinn
Shimon Pisnoy
Steven H. Frankel
Steven H. Frankel
157
1
0
24 Dec 2025
Physics-Informed Neural Networks for Thermophysical Property Retrieval
Physics-Informed Neural Networks for Thermophysical Property Retrieval
Ali Waseem
Malcolm Mielle
82
0
0
28 Nov 2025
Improving the accuracy and generalizability of molecular property regression models with a substructure-substitution-rule-informed framework
Improving the accuracy and generalizability of molecular property regression models with a substructure-substitution-rule-informed frameworkAnnual Conference of the IEEE Industrial Electronics Society (IECON), 2022
Xiaoyu Fan
Lin Guo
Ruizhen Jia
Yang Tian
Zhihao Yang
Boxue Tian
Boxue Tian
AI4CE
273
0
0
11 Nov 2025
LieSolver: A PDE-constrained solver for IBVPs using Lie symmetries
LieSolver: A PDE-constrained solver for IBVPs using Lie symmetries
R. P. Klausen
Ivan Timofeev
Johannes Frank
Jonas R. Naujoks
Thomas Wiegand
Sebastian Lapuschkin
Wojciech Samek
AI4CE
119
0
0
29 Oct 2025
Gradient Enhanced Self-Training Physics-Informed Neural Network (gST-PINN) for Solving Nonlinear Partial Differential Equations
Gradient Enhanced Self-Training Physics-Informed Neural Network (gST-PINN) for Solving Nonlinear Partial Differential Equations
Narayan S Iyer
Bivas Bhaumik
Ram S Iyer
Satyasaran Changdar
PINNAI4CE
176
0
0
12 Oct 2025
AB-PINNs: Adaptive-Basis Physics-Informed Neural Networks for Residual-Driven Domain Decomposition
AB-PINNs: Adaptive-Basis Physics-Informed Neural Networks for Residual-Driven Domain Decomposition
Jonah Botvinick-Greenhouse
Wael H. Ali
M. Benosman
S. Mowlavi
AI4CE
128
0
0
10 Oct 2025
HSNet: Heterogeneous Subgraph Network for Single Image Super-resolution
HSNet: Heterogeneous Subgraph Network for Single Image Super-resolution
Qiongyang Hu
Wenyang Liu
Wenbin Zou
Yuejiao Su
Lap-Pui Chau
Yi Wang
175
1
0
08 Oct 2025
Physics-informed time series analysis with Kolmogorov-Arnold Networks under Ehrenfest constraints
Physics-informed time series analysis with Kolmogorov-Arnold Networks under Ehrenfest constraints
Abhijit Sen
Illya V. Lukin
K. Jacobs
Lev Kaplan
Andrii G. Sotnikov
Denys I. Bondar
AI4TSAI4CE
101
0
0
23 Sep 2025
Indoor Airflow Imaging Using Physics-Informed Background-Oriented Schlieren Tomography
Indoor Airflow Imaging Using Physics-Informed Background-Oriented Schlieren Tomography
Arjun Teh
Wael H. Ali
Joshua Rapp
Hassan Mansour
AI4CE
111
0
0
17 Sep 2025
Neuro-Spectral Architectures for Causal Physics-Informed Networks
Neuro-Spectral Architectures for Causal Physics-Informed Networks
Arthur Bizzi
Leonardo M. Moreira
Márcio Marques
Leonardo Mendonça
Christian Júnior de Oliveira
...
Daniel Yukimura
Pavel Petrov
João M. Pereira
Tiago Novello
Lucas Nissenbaum
PINN
303
1
0
05 Sep 2025
Gaussian Process Regression of Steering Vectors With Physics-Aware Deep Composite Kernels for Augmented Listening
Gaussian Process Regression of Steering Vectors With Physics-Aware Deep Composite Kernels for Augmented Listening
Diego Di Carlo
Koyama Shoichi
Nugraha Aditya Arie
Fontaine Mathieu
Bando Yoshiaki
Yoshii Kazuyoshi
LLMSV
150
0
0
20 Aug 2025
Data-driven particle dynamics: Structure-preserving coarse-graining for emergent behavior in non-equilibrium systems
Data-driven particle dynamics: Structure-preserving coarse-graining for emergent behavior in non-equilibrium systems
Quercus Hernandez
Max Win
Thomas C. O'Connor
Paulo E. Arratia
Nathaniel Trask
AI4CE
181
0
0
18 Aug 2025
Strategies for training point distributions in physics-informed neural networks
Strategies for training point distributions in physics-informed neural networks
Santosh Humagain
Toni Schneidereit
116
0
0
17 Aug 2025
Improved Training Strategies for Physics-Informed Neural Networks using Real Experimental Data in Aluminum Spot Welding
Improved Training Strategies for Physics-Informed Neural Networks using Real Experimental Data in Aluminum Spot Welding
Jan A. Zak
Christian Weißenfels
AI4CE
123
0
0
06 Aug 2025
Solved in Unit Domain: JacobiNet for Differentiable Coordinate-Transformed PINNs
Solved in Unit Domain: JacobiNet for Differentiable Coordinate-Transformed PINNs
Xi Chen
J. Yang
Junjie Zhang
Runnan Yang
Xu Liu
Hong Wang
Tinghui Zheng
Ziyu Ren
Wenqi Hu
102
0
0
04 Aug 2025
Simulating Three-dimensional Turbulence with Physics-informed Neural Networks
Simulating Three-dimensional Turbulence with Physics-informed Neural Networks
Sifan Wang
Shyam Sankaran
Xiantao Fan
P. Stinis
P. Perdikaris
PINNAI4CE
170
7
0
11 Jul 2025
Leveraging Influence Functions for Resampling Data in Physics-Informed Neural Networks
Leveraging Influence Functions for Resampling Data in Physics-Informed Neural Networks
Jonas R. Naujoks
Aleksander Krasowski
Moritz Weckbecker
Galip Umit Yolcu
Thomas Wiegand
Sebastian Lapuschkin
Wojciech Samek
R. P. Klausen
TDIPINNAI4CE
270
1
0
19 Jun 2025
Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning
Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning
Julius Berner
Miguel Liu-Schiaffini
Jean Kossaifi
Valentin Duruisseaux
Boris Bonev
Kamyar Azizzadenesheli
A. Anandkumar
AI4CE
381
4
0
12 Jun 2025
Are Statistical Methods Obsolete in the Era of Deep Learning?
Are Statistical Methods Obsolete in the Era of Deep Learning?
Skyler Wu
Shihao Yang
S. C. Kou
115
0
0
27 May 2025
Leveraging KANs for Expedient Training of Multichannel MLPs via Preconditioning and Geometric Refinement
Leveraging KANs for Expedient Training of Multichannel MLPs via Preconditioning and Geometric Refinement
Jonas A. Actor
Graham Harper
Ben Southworth
E. Cyr
233
3
0
23 May 2025
A Physics-Informed Spatiotemporal Deep Learning Framework for Turbulent Systems
A Physics-Informed Spatiotemporal Deep Learning Framework for Turbulent Systems
Luca Menicali
Andrew Grace
David H. Richter
Stefano Castruccio
AI4CE
232
0
0
16 May 2025
Physics-informed neural network estimation of active material properties in time-dependent cardiac biomechanical models
Physics-informed neural network estimation of active material properties in time-dependent cardiac biomechanical models
Matthias Höfler
Francesco Regazzoni
S. Pagani
Elias Karabelas
Christoph M. Augustin
Gundolf Haase
Gernot Plank
Federica Caforio
177
2
0
06 May 2025
Integration Matters for Learning PDEs with Backward SDEs
Integration Matters for Learning PDEs with Backward SDEs
Sungje Park
Stephen Tu
PINN
364
0
0
02 May 2025
Multi-level datasets training method in Physics-Informed Neural Networks
Multi-level datasets training method in Physics-Informed Neural Networks
Yao-Hsuan Tsai
Hsiao-Tung Juan
Pao-Hsiung Chiu
Chao-An Lin
AI4CE
295
0
0
30 Apr 2025
Inverse Modeling of Dielectric Response in Time Domain using Physics-Informed Neural Networks
Inverse Modeling of Dielectric Response in Time Domain using Physics-Informed Neural Networks
Emir Esenov
Olof Hjortstam
Yuriy Serdyuk
Thomas Hammarström
Christian Häger
206
0
0
28 Apr 2025
BO-SA-PINNs: Self-adaptive physics-informed neural networks based on Bayesian optimization for automatically designing PDE solvers
BO-SA-PINNs: Self-adaptive physics-informed neural networks based on Bayesian optimization for automatically designing PDE solvers
Rui Zhang
Liang Li
Stéphane Lanteri
Hao Kang
Jiaqi Li
212
1
0
14 Apr 2025
Hard-constraining Neumann boundary conditions in physics-informed neural networks via Fourier feature embeddings
Hard-constraining Neumann boundary conditions in physics-informed neural networks via Fourier feature embeddings
Christopher Straub
Philipp Brendel
Vlad Medvedev
A. Rosskopf
302
5
0
01 Apr 2025
On-site estimation of battery electrochemical parameters via transfer learning based physics-informed neural network approach
On-site estimation of battery electrochemical parameters via transfer learning based physics-informed neural network approach
Josu Yeregui
Iker Lopetegi
Sergio Fernandez
Erik Garayalde
Unai Iraola
280
1
0
28 Mar 2025
Enhanced Vascular Flow Simulations in Aortic Aneurysm via Physics-Informed Neural Networks and Deep Operator Networks
Enhanced Vascular Flow Simulations in Aortic Aneurysm via Physics-Informed Neural Networks and Deep Operator Networks
Oscar L. Cruz-González
Valérie Deplano
Badih Ghattas
MedImAI4CE
221
1
0
19 Mar 2025
Learning and discovering multiple solutions using physics-informed neural networks with random initialization and deep ensemble
Zongren Zou
Zhicheng Wang
George Karniadakis
PINNAI4CE
333
12
0
08 Mar 2025
Unraveling particle dark matter with Physics-Informed Neural Networks
Unraveling particle dark matter with Physics-Informed Neural NetworksPhysics Letters B (Phys. Lett. B), 2025
M.P. Bento
H.B. Câmara
J.F. Seabra
353
2
0
24 Feb 2025
Connecting the geometry and dynamics of many-body complex systems with message passing neural operators
N. Gabriel
N. Johnson
George Em Karniadakis
AI4CE
337
0
0
21 Feb 2025
Gradient Alignment in Physics-informed Neural Networks: A Second-Order Optimization Perspective
Gradient Alignment in Physics-informed Neural Networks: A Second-Order Optimization Perspective
Sizhuang He
Ananyae Kumar Bhartari
Bowen Li
P. Perdikaris
PINN
444
32
0
02 Feb 2025
Sample-Efficient Behavior Cloning Using General Domain Knowledge
Sample-Efficient Behavior Cloning Using General Domain KnowledgeInternational Joint Conference on Artificial Intelligence (IJCAI), 2025
Feiyu Zhu
Jean Oh
Reid Simmons
147
0
0
27 Jan 2025
Coupled Integral PINN for conservation law
Yeping Wang
Shihao Yang
PINN
195
1
0
18 Nov 2024
From PINNs to PIKANs: Recent Advances in Physics-Informed Machine
  Learning
From PINNs to PIKANs: Recent Advances in Physics-Informed Machine Learning
Juan Diego Toscano
Vivek Oommen
Alan John Varghese
Zongren Zou
Nazanin Ahmadi Daryakenari
Chenxi Wu
George Karniadakis
PINNAI4CE
223
116
0
17 Oct 2024
Enhanced physics-informed neural networks (PINNs) for high-order power
  grid dynamics
Enhanced physics-informed neural networks (PINNs) for high-order power grid dynamics
Vineet Jagadeesan Nair
PINN
199
1
0
10 Oct 2024
Gaussian Variational Schemes on Bounded and Unbounded Domains
Gaussian Variational Schemes on Bounded and Unbounded Domains
Jonas A. Actor
Anthony Gruber
E. Cyr
Nathaniel Trask
247
0
0
08 Oct 2024
MelissaDL x Breed: Towards Data-Efficient On-line Supervised Training of
  Multi-parametric Surrogates with Active Learning
MelissaDL x Breed: Towards Data-Efficient On-line Supervised Training of Multi-parametric Surrogates with Active Learning
Sofya Dymchenko
Abhishek Purandare
Bruno Raffin
AI4CE
223
0
0
08 Oct 2024
HyResPINNs: Hybrid Residual Networks for Adaptive Neural and RBF Integration in Solving PDEs
HyResPINNs: Hybrid Residual Networks for Adaptive Neural and RBF Integration in Solving PDEs
Madison Cooley
Robert M. Kirby
Shandian Zhe
Varun Shankar
PINNAI4CE
229
0
0
04 Oct 2024
Deep Learning Alternatives of the Kolmogorov Superposition Theorem
Deep Learning Alternatives of the Kolmogorov Superposition TheoremInternational Conference on Learning Representations (ICLR), 2024
Leonardo Ferreira Guilhoto
P. Perdikaris
365
11
0
02 Oct 2024
Micrometer: Micromechanics Transformer for Predicting Mechanical
  Responses of Heterogeneous Materials
Micrometer: Micromechanics Transformer for Predicting Mechanical Responses of Heterogeneous Materials
Sizhuang He
Tong-Rui Liu
Shyam Sankaran
P. Perdikaris
AI4CE
328
6
0
23 Sep 2024
FB-HyDON: Parameter-Efficient Physics-Informed Operator Learning of
  Complex PDEs via Hypernetwork and Finite Basis Domain Decomposition
FB-HyDON: Parameter-Efficient Physics-Informed Operator Learning of Complex PDEs via Hypernetwork and Finite Basis Domain Decomposition
Milad Ramezankhani
Rishi Parekh
A. Deodhar
Dagnachew Birru
AI4CE
153
0
0
13 Sep 2024
Domain-decoupled Physics-informed Neural Networks with Closed-form
  Gradients for Fast Model Learning of Dynamical Systems
Domain-decoupled Physics-informed Neural Networks with Closed-form Gradients for Fast Model Learning of Dynamical SystemsInternational Conference on Informatics in Control, Automation and Robotics (ICINCO), 2024
Henrik Krauss
Tim-Lukas Habich
Max Bartholdt
Thomas Seel
Moritz Schappler
PINNAI4CE
312
5
0
27 Aug 2024
Physics Informed Kolmogorov-Arnold Neural Networks for Dynamical
  Analysis via Efficent-KAN and WAV-KAN
Physics Informed Kolmogorov-Arnold Neural Networks for Dynamical Analysis via Efficent-KAN and WAV-KAN
Subhajit Patra
Sonali Panda
B. K. Parida
Mahima Arya
Kurt Jacobs
Denys I. Bondar
Abhijit Sen
240
19
0
25 Jul 2024
Adaptive Training of Grid-Dependent Physics-Informed Kolmogorov-Arnold
  Networks
Adaptive Training of Grid-Dependent Physics-Informed Kolmogorov-Arnold Networks
Spyros Rigas
M. Papachristou
Theofilos Papadopoulos
Fotios Anagnostopoulos
Georgios Alexandridis
AI4CE
262
49
0
24 Jul 2024
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Jingtong Sun
Julius Berner
Lorenz Richter
Marius Zeinhofer
Johannes Müller
Kamyar Azizzadenesheli
Anima Anandkumar
OTDiffM
221
17
0
10 Jul 2024
FlamePINN-1D: Physics-informed neural networks to solve forward and
  inverse problems of 1D laminar flames
FlamePINN-1D: Physics-informed neural networks to solve forward and inverse problems of 1D laminar flamesCombustion and Flame (CF), 2024
Jiahao Wu
Su Zhang
Yuxin Wu
Guihua Zhang
Xin Li
Hai Zhang
AI4CEPINN
96
7
0
07 Jun 2024
Astral: training physics-informed neural networks with error majorants
Astral: training physics-informed neural networks with error majorants
V. Fanaskov
Tianchi Yu
Alexander Rudikov
Ivan Oseledets
257
1
0
04 Jun 2024
Polynomial-Augmented Neural Networks (PANNs) with Weak Orthogonality Constraints for Enhanced Function and PDE Approximation
Polynomial-Augmented Neural Networks (PANNs) with Weak Orthogonality Constraints for Enhanced Function and PDE Approximation
Madison Cooley
Shandian Zhe
Robert M. Kirby
Varun Shankar
414
1
0
04 Jun 2024
12
Next