ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.09474
  4. Cited By
Evolving Scientific Discovery by Unifying Data and Background Knowledge
  with AI Hilbert
v1v2v3 (latest)

Evolving Scientific Discovery by Unifying Data and Background Knowledge with AI Hilbert

Nature Communications (Nat. Commun.), 2023
18 August 2023
Ryan Cory-Wright
Cristina Cornelio
S. Dash
Bachir El Khadir
L. Horesh
ArXiv (abs)PDFHTML

Papers citing "Evolving Scientific Discovery by Unifying Data and Background Knowledge with AI Hilbert"

6 / 6 papers shown
Title
When is a System Discoverable from Data? Discovery Requires Chaos
When is a System Discoverable from Data? Discovery Requires Chaos
Zakhar Shumaylov
Peter Zaika
Philipp Scholl
Gitta Kutyniok
Lior Horesh
Carola-Bibiane Schönlieb
123
1
0
12 Nov 2025
EGG-SR: Embedding Symbolic Equivalence into Symbolic Regression via Equality Graph
EGG-SR: Embedding Symbolic Equivalence into Symbolic Regression via Equality Graph
Nan Jiang
Ziyi Wang
Yexiang Xue
OffRL
108
0
0
08 Nov 2025
Reproducibility: The New Frontier in AI Governance
Reproducibility: The New Frontier in AI Governance
Israel Mason-Williams
Gabryel Mason-Williams
132
3
0
13 Oct 2025
Bridging the Gap Between Scientific Laws Derived by AI Systems and Canonical Knowledge via Abductive Inference with AI-Noether
Bridging the Gap Between Scientific Laws Derived by AI Systems and Canonical Knowledge via Abductive Inference with AI-Noether
Karan Srivastava
S. Dash
Ryan Cory-Wright
Barry Trager
L. Horesh
Lior Horesh
92
1
0
26 Sep 2025
The Need for Verification in AI-Driven Scientific Discovery
The Need for Verification in AI-Driven Scientific Discovery
Cristina Cornelio
Takuya Ito
Ryan Cory-Wright
S. Dash
L. Horesh
115
2
0
01 Sep 2025
Verification and Validation for Trustworthy Scientific Machine Learning
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
428
2
0
21 Feb 2025
1