ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.09570
  4. Cited By
Investigating the Interplay between Features and Structures in Graph
  Learning

Investigating the Interplay between Features and Structures in Graph Learning

18 August 2023
Daniele Castellana
Federico Errica
ArXivPDFHTML

Papers citing "Investigating the Interplay between Features and Structures in Graph Learning"

6 / 6 papers shown
Title
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Federico Errica
Henrik Christiansen
Viktor Zaverkin
Takashi Maruyama
Mathias Niepert
Francesco Alesiani
45
6
0
27 Dec 2023
GraphWorld: Fake Graphs Bring Real Insights for GNNs
GraphWorld: Fake Graphs Bring Real Insights for GNNs
John Palowitch
Anton Tsitsulin
Brandon Mayer
Bryan Perozzi
GNN
183
68
0
28 Feb 2022
Predicting Patient Outcomes with Graph Representation Learning
Predicting Patient Outcomes with Graph Representation Learning
Emma Rocheteau
Catherine Tong
Petar Velickovic
Nicholas D. Lane
Pietro Lió
38
48
0
11 Jan 2021
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
183
907
0
02 Mar 2020
Geom-GCN: Geometric Graph Convolutional Networks
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
1