ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.10450
  4. Cited By
COCA: Classifier-Oriented Calibration via Textual Prototype for
  Source-Free Universal Domain Adaptation
v1v2 (latest)

COCA: Classifier-Oriented Calibration via Textual Prototype for Source-Free Universal Domain Adaptation

Asian Conference on Computer Vision (ACCV), 2023
21 August 2023
Xinghong Liu
Yi Zhou
Tao Zhou
Chun-Mei Feng
Ling Shao
    VLM
ArXiv (abs)PDFHTML

Papers citing "COCA: Classifier-Oriented Calibration via Textual Prototype for Source-Free Universal Domain Adaptation"

3 / 3 papers shown
Analysis of Pseudo-Labeling for Online Source-Free Universal Domain Adaptation
Analysis of Pseudo-Labeling for Online Source-Free Universal Domain Adaptation
Pascal Schlachter
Jonathan Fuss
Bin Yang
253
0
0
16 Apr 2025
Memory-Efficient Pseudo-Labeling for Online Source-Free Universal Domain
  Adaptation using a Gaussian Mixture Model
Memory-Efficient Pseudo-Labeling for Online Source-Free Universal Domain Adaptation using a Gaussian Mixture Model
Pascal Schlachter
Simon Wagner
Bin Yang
TTA
315
4
0
19 Jul 2024
CLIP-Adapter: Better Vision-Language Models with Feature Adapters
CLIP-Adapter: Better Vision-Language Models with Feature AdaptersInternational Journal of Computer Vision (IJCV), 2021
Shiyang Feng
Shijie Geng
Renrui Zhang
Teli Ma
Rongyao Fang
Zelong Li
Jiaming Song
Yu Qiao
VLMCLIP
1.2K
1,439
0
09 Oct 2021
1
Page 1 of 1