Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.01156
Cited By
Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics
3 September 2023
Kyle Cranmer
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics"
7 / 7 papers shown
Title
Multilevel Generative Samplers for Investigating Critical Phenomena
Ankur Singha
E. Cellini
K. Nicoli
K. Jansen
Stefan Kühn
Shinichi Nakajima
54
1
0
11 Mar 2025
Physics-Driven Learning for Inverse Problems in Quantum Chromodynamics
Gert Aarts
Kenji Fukushima
Tetsuo Hatsuda
Andreas Ipp
S. Shi
L. Wang
K. Zhou
AI4CE
PINN
41
2
0
09 Jan 2025
On learning higher-order cumulants in diffusion models
Gert Aarts
Diaa E. Habibi
L. Wang
K. Zhou
26
4
0
28 Oct 2024
Flow-Based Sampling for Entanglement Entropy and the Machine Learning of Defects
Andrea Bulgarelli
E. Cellini
K. Jansen
Stefan Kühn
A. Nada
Shinichi Nakajima
K. Nicoli
M. Panero
18
4
0
18 Oct 2024
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
60
1
0
27 May 2024
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,424
0
23 Jan 2020
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
225
2,543
0
25 Jan 2016
1