Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.06439
Cited By
Attention De-sparsification Matters: Inducing Diversity in Digital Pathology Representation Learning
12 September 2023
S. Kapse
Srijan Das
Jingwei Zhang
Rajarsi R. Gupta
Joel H. Saltz
Dimitris Samaras
Prateek Prasanna
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Attention De-sparsification Matters: Inducing Diversity in Digital Pathology Representation Learning"
6 / 6 papers shown
Title
What Do Self-Supervised Vision Transformers Learn?
Namuk Park
Wonjae Kim
Byeongho Heo
Taekyung Kim
Sangdoo Yun
SSL
65
76
1
01 May 2023
Self-Supervised Visual Representation Learning with Semantic Grouping
Xin Wen
Bingchen Zhao
Anlin Zheng
X. Zhang
Xiaojuan Qi
SSL
101
71
0
30 May 2022
GroupViT: Semantic Segmentation Emerges from Text Supervision
Jiarui Xu
Shalini De Mello
Sifei Liu
Wonmin Byeon
Thomas Breuel
Jan Kautz
X. Wang
ViT
VLM
177
494
0
22 Feb 2022
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
BRACS: A Dataset for BReAst Carcinoma Subtyping in H&E Histology Images
N. Brancati
A. Anniciello
Pushpak Pati
D. Riccio
G. Scognamiglio
...
A. Foncubierta
G. Botti
M. Gabrani
Florinda Feroce
Maria Frucci
41
119
0
08 Nov 2021
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
283
5,723
0
29 Apr 2021
1