ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.07727
  4. Cited By
PerPLM: Personalized Fine-tuning of Pretrained Language Models via
  Writer-specific Intermediate Learning and Prompts

PerPLM: Personalized Fine-tuning of Pretrained Language Models via Writer-specific Intermediate Learning and Prompts

14 September 2023
Daisuke Oba
Naoki Yoshinaga
Masashi Toyoda
ArXivPDFHTML

Papers citing "PerPLM: Personalized Fine-tuning of Pretrained Language Models via Writer-specific Intermediate Learning and Prompts"

4 / 4 papers shown
Title
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally
  Across Scales and Tasks
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
236
805
0
14 Oct 2021
UserIdentifier: Implicit User Representations for Simple and Effective
  Personalized Sentiment Analysis
UserIdentifier: Implicit User Representations for Simple and Effective Personalized Sentiment Analysis
Fatemehsadat Mireshghallah
Vaishnavi Shrivastava
Milad Shokouhi
Taylor Berg-Kirkpatrick
Robert Sim
Dimitrios Dimitriadis
FedML
37
33
0
01 Oct 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,843
0
18 Apr 2021
Dynamic Contextualized Word Embeddings
Dynamic Contextualized Word Embeddings
Valentin Hofmann
J. Pierrehumbert
Hinrich Schütze
27
50
0
23 Oct 2020
1