Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.07727
Cited By
PerPLM: Personalized Fine-tuning of Pretrained Language Models via Writer-specific Intermediate Learning and Prompts
14 September 2023
Daisuke Oba
Naoki Yoshinaga
Masashi Toyoda
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PerPLM: Personalized Fine-tuning of Pretrained Language Models via Writer-specific Intermediate Learning and Prompts"
4 / 4 papers shown
Title
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
236
805
0
14 Oct 2021
UserIdentifier: Implicit User Representations for Simple and Effective Personalized Sentiment Analysis
Fatemehsadat Mireshghallah
Vaishnavi Shrivastava
Milad Shokouhi
Taylor Berg-Kirkpatrick
Robert Sim
Dimitrios Dimitriadis
FedML
37
33
0
01 Oct 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,843
0
18 Apr 2021
Dynamic Contextualized Word Embeddings
Valentin Hofmann
J. Pierrehumbert
Hinrich Schütze
27
50
0
23 Oct 2020
1