ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.08187
23
42

Encoded Summarization: Summarizing Documents into Continuous Vector Space for Legal Case Retrieval

15 September 2023
Vu Tran
Minh le Nguyen
S. Tojo
K. Satoh
    AILaw
ArXivPDFHTML
Abstract

We present our method for tackling a legal case retrieval task by introducing our method of encoding documents by summarizing them into continuous vector space via our phrase scoring framework utilizing deep neural networks. On the other hand, we explore the benefits from combining lexical features and latent features generated with neural networks. Our experiments show that lexical features and latent features generated with neural networks complement each other to improve the retrieval system performance. Furthermore, our experimental results suggest the importance of case summarization in different aspects: using provided summaries and performing encoded summarization. Our approach achieved F1 of 65.6% and 57.6% on the experimental datasets of legal case retrieval tasks.

View on arXiv
Comments on this paper