ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.10285
  4. Cited By
Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative
  Model Inference with Unstructured Sparsity

Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative Model Inference with Unstructured Sparsity

19 September 2023
Haojun Xia
Zhen Zheng
Yuchao Li
Donglin Zhuang
Zhongzhu Zhou
Xiafei Qiu
Yong Li
Wei Lin
S. Song
ArXivPDFHTML

Papers citing "Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative Model Inference with Unstructured Sparsity"

6 / 6 papers shown
Title
FlexGen: High-Throughput Generative Inference of Large Language Models
  with a Single GPU
FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU
Ying Sheng
Lianmin Zheng
Binhang Yuan
Zhuohan Li
Max Ryabinin
...
Joseph E. Gonzalez
Percy Liang
Christopher Ré
Ion Stoica
Ce Zhang
144
366
0
13 Mar 2023
Efficient Quantized Sparse Matrix Operations on Tensor Cores
Efficient Quantized Sparse Matrix Operations on Tensor Cores
Shigang Li
Kazuki Osawa
Torsten Hoefler
72
31
0
14 Sep 2022
SparseTIR: Composable Abstractions for Sparse Compilation in Deep
  Learning
SparseTIR: Composable Abstractions for Sparse Compilation in Deep Learning
Zihao Ye
Ruihang Lai
Junru Shao
Tianqi Chen
Luis Ceze
76
91
0
11 Jul 2022
Can Foundation Models Wrangle Your Data?
Can Foundation Models Wrangle Your Data?
A. Narayan
Ines Chami
Laurel J. Orr
Simran Arora
Christopher Ré
LMTD
AI4CE
176
213
0
20 May 2022
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
139
684
0
31 Jan 2021
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
243
1,817
0
17 Sep 2019
1