ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.10825
  4. Cited By
Latent Disentanglement in Mesh Variational Autoencoders Improves the
  Diagnosis of Craniofacial Syndromes and Aids Surgical Planning

Latent Disentanglement in Mesh Variational Autoencoders Improves the Diagnosis of Craniofacial Syndromes and Aids Surgical Planning

5 September 2023
Simone Foti
A. Rickart
Bongjin Koo
Eimear O' Sullivan
L. Lande
A. Papaioannou
R. Khonsari
Danail Stoyanov
N. Jeelani
Silvia Schievano
D. Dunaway
Matthew J. Clarkson
ArXivPDFHTML

Papers citing "Latent Disentanglement in Mesh Variational Autoencoders Improves the Diagnosis of Craniofacial Syndromes and Aids Surgical Planning"

Title
No papers