ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.13211
  4. Cited By
Interpretable structural model error discovery from sparse assimilation
  increments using spectral bias-reduced neural networks: A quasi-geostrophic
  turbulence test case

Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case

22 September 2023
R. Mojgani
A. Chattopadhyay
P. Hassanzadeh
ArXivPDFHTML

Papers citing "Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case"

5 / 5 papers shown
Title
Spectrum-Informed Multistage Neural Networks: Multiscale Function
  Approximators of Machine Precision
Spectrum-Informed Multistage Neural Networks: Multiscale Function Approximators of Machine Precision
Jakin Ng
Yongjian Wang
Ching-Yao Lai
33
0
0
24 Jul 2024
Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural
  Network Emulators of Geophysical Turbulence
Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural Network Emulators of Geophysical Turbulence
T. A. Smith
S. Penny
Jason A. Platt
Tse-Chun Chen
15
5
0
28 Apr 2023
Discovery of interpretable structural model errors by combining Bayesian
  sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test
  case
Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test case
R. Mojgani
A. Chattopadhyay
P. Hassanzadeh
9
14
0
01 Oct 2021
Global field reconstruction from sparse sensors with Voronoi
  tessellation-assisted deep learning
Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning
Kai Fukami
R. Maulik
Nesar Ramachandra
K. Fukagata
Kunihiko Taira
32
139
0
03 Jan 2021
On the eigenvector bias of Fourier feature networks: From regression to
  solving multi-scale PDEs with physics-informed neural networks
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
129
435
0
18 Dec 2020
1