Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.15123
Cited By
Uncovering Neural Scaling Laws in Molecular Representation Learning
15 September 2023
Dingshuo Chen
Yanqiao Zhu
Jieyu Zhang
Yuanqi Du
Zhixun Li
Qiang Liu
Shu Wu
Liang Wang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Uncovering Neural Scaling Laws in Molecular Representation Learning"
18 / 18 papers shown
Title
MolSpectra: Pre-training 3D Molecular Representation with Multi-modal Energy Spectra
Liang Wang
Shaozhen Liu
Yu Rong
Deli Zhao
Qiang Liu
Shu Wu
Liang Wang
MedIm
55
1
0
22 Feb 2025
Pin-Tuning: Parameter-Efficient In-Context Tuning for Few-Shot Molecular Property Prediction
Liang Wang
Qiang Liu
Shaozhen Liu
Xin Sun
Shu Wu
Liang Wang
29
0
0
02 Nov 2024
Pushing the Limits of All-Atom Geometric Graph Neural Networks: Pre-Training, Scaling and Zero-Shot Transfer
Zihan Pengmei
Zhengyuan Shen
Zichen Wang
Marcus Collins
Huzefa Rangwala
AI4CE
11
2
0
29 Oct 2024
GDeR: Safeguarding Efficiency, Balancing, and Robustness via Prototypical Graph Pruning
Guibin Zhang
Haonan Dong
Yuchen Zhang
Zhixun Li
Dingshuo Chen
Kai Wang
Tianlong Chen
Yuxuan Liang
Dawei Cheng
Kun Wang
19
2
0
17 Oct 2024
Rethinking Fair Graph Neural Networks from Re-balancing
Zhixun Li
Yushun Dong
Qiang Liu
Jeffrey Xu Yu
16
7
0
16 Jul 2024
GLBench: A Comprehensive Benchmark for Graph with Large Language Models
Yuhan Li
Peisong Wang
Xiao Zhu
Aochuan Chen
Haiyun Jiang
Deng Cai
Victor Wai Kin Chan
Jia Li
40
11
0
10 Jul 2024
Uni-Mol2: Exploring Molecular Pretraining Model at Scale
Xiaohong Ji
Zhen Wang
Zhifeng Gao
Hang Zheng
Linfeng Zhang
Guolin Ke
Weinan E
AI4CE
25
5
0
21 Jun 2024
Benchmarking Out-of-Distribution Generalization Capabilities of DNN-based Encoding Models for the Ventral Visual Cortex
Spandan Madan
Will Xiao
Mingran Cao
Hanspeter Pfister
Margaret Livingstone
Gabriel Kreiman
OOD
37
0
0
16 Jun 2024
On the Scalability of GNNs for Molecular Graphs
Maciej Sypetkowski
Frederik Wenkel
Farimah Poursafaei
Nia Dickson
Karush Suri
Philip Fradkin
Dominique Beaini
GNN
AI4CE
21
11
0
17 Apr 2024
Text-Guided Molecule Generation with Diffusion Language Model
Haisong Gong
Qiang Liu
Shu Wu
Liang Wang
19
12
0
20 Feb 2024
Position: Graph Foundation Models are Already Here
Haitao Mao
Zhikai Chen
Wenzhuo Tang
Jianan Zhao
Yao Ma
Tong Zhao
Neil Shah
Mikhail Galkin
Jiliang Tang
AI4CE
42
25
0
03 Feb 2024
A Systematic Survey of Chemical Pre-trained Models
Jun-Xiong Xia
Yanqiao Zhu
Yuanqi Du
Stan Z.Li
AI4CE
44
50
0
29 Oct 2022
Scaling Laws For Deep Learning Based Image Reconstruction
Tobit Klug
Reinhard Heckel
49
9
0
27 Sep 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
73
142
0
23 Jun 2022
Molecular Representation Learning via Heterogeneous Motif Graph Neural Networks
Zhaoning Yu
Hongyang Gao
21
38
0
01 Feb 2022
Pre-training Molecular Graph Representation with 3D Geometry
Shengchao Liu
Hanchen Wang
Weiyang Liu
Joan Lasenby
Hongyu Guo
Jian Tang
106
294
0
07 Oct 2021
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
220
3,054
0
23 Jan 2020
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
152
1,748
0
02 Mar 2017
1