ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.17187
  4. Cited By
TBD Pedestrian Data Collection: Towards Rich, Portable, and Large-Scale
  Natural Pedestrian Data

TBD Pedestrian Data Collection: Towards Rich, Portable, and Large-Scale Natural Pedestrian Data

29 September 2023
Allan Wang
Daisuke Sato
Yasser Corzo
Sonya Simkin
Abhijat Biswas
Aaron Steinfeld
    3DV
ArXivPDFHTML

Papers citing "TBD Pedestrian Data Collection: Towards Rich, Portable, and Large-Scale Natural Pedestrian Data"

3 / 3 papers shown
Title
ByteTrack: Multi-Object Tracking by Associating Every Detection Box
ByteTrack: Multi-Object Tracking by Associating Every Detection Box
Yifu Zhang
Pei Sun
Yi-Xin Jiang
Dongdong Yu
Fucheng Weng
Zehuan Yuan
Ping Luo
Wenyu Liu
Xinggang Wang
VOT
96
1,289
0
13 Oct 2021
MOT20: A benchmark for multi object tracking in crowded scenes
MOT20: A benchmark for multi object tracking in crowded scenes
Patrick Dendorfer
Hamid Rezatofighi
Anton Milan
Javen Qinfeng Shi
Daniel Cremers
Ian Reid
Stefan Roth
Konrad Schindler
Laura Leal-Taixé
VOT
163
620
0
19 Mar 2020
Motion Planning Among Dynamic, Decision-Making Agents with Deep
  Reinforcement Learning
Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning
Michael Everett
Yu Fan Chen
Jonathan P. How
133
505
0
04 May 2018
1