ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.17361
  4. Cited By
Network Memory Footprint Compression Through Jointly Learnable Codebooks
  and Mappings

Network Memory Footprint Compression Through Jointly Learnable Codebooks and Mappings

International Conference on Learning Representations (ICLR), 2023
29 September 2023
Vittorio Giammarino
Arnaud Dapogny
Kévin Bailly
    MQ
ArXiv (abs)PDFHTML

Papers citing "Network Memory Footprint Compression Through Jointly Learnable Codebooks and Mappings"

1 / 1 papers shown
Title
ViM-VQ: Efficient Post-Training Vector Quantization for Visual Mamba
ViM-VQ: Efficient Post-Training Vector Quantization for Visual Mamba
Juncan Deng
Shuaiting Li
Zeyu Wang
Kedong Xu
Hong Gu
Kejie Huang
MQ
370
0
0
12 Mar 2025
1