Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.01433
Cited By
AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box Identification
29 September 2023
Nazanin Ahmadi Daryakenari
Mario De Florio
K. Shukla
George Karniadakis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box Identification"
8 / 8 papers shown
Title
Physics Informed Constrained Learning of Dynamics from Static Data
Pengtao Dang
Tingbo Guo
Melissa Fishel
Guang Lin
Wenzhuo Wu
Sha Cao
Chi Zhang
PINN
AI4CE
49
0
0
17 Apr 2025
ADAM-SINDy: An Efficient Optimization Framework for Parameterized Nonlinear Dynamical System Identification
Siva Viknesh
Younes Tatari
Amirhossein Arzani
21
1
0
21 Oct 2024
Integrating Neural Operators with Diffusion Models Improves Spectral Representation in Turbulence Modeling
Vivek Oommen
Aniruddha Bora
Zhen Zhang
George Karniadakis
DiffM
45
13
0
13 Sep 2024
Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl
M. Cranmer
41
38
0
02 May 2023
Physics-informed neural networks for predicting gas flow dynamics and unknown parameters in diesel engines
Kamaljyoti Nath
Xuhui Meng
Daniel J. Smith
George Karniadakis
PINN
10
20
0
26 Apr 2023
Symbolic Regression is NP-hard
M. Virgolin
S. Pissis
57
58
0
03 Jul 2022
Constructing coarse-scale bifurcation diagrams from spatio-temporal observations of microscopic simulations: A parsimonious machine learning approach
Evangelos Galaris
Gianluca Fabiani
I. Gallos
Ioannis G. Kevrekidis
Constantinos Siettos
AI4CE
19
40
0
31 Jan 2022
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
503
0
11 Mar 2020
1