ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.01706
  4. Cited By
On Representation Complexity of Model-based and Model-free Reinforcement
  Learning

On Representation Complexity of Model-based and Model-free Reinforcement Learning

3 October 2023
Hanlin Zhu
Baihe Huang
Stuart Russell
    OffRL
ArXivPDFHTML

Papers citing "On Representation Complexity of Model-based and Model-free Reinforcement Learning"

3 / 3 papers shown
Title
Optimal Conservative Offline RL with General Function Approximation via
  Augmented Lagrangian
Optimal Conservative Offline RL with General Function Approximation via Augmented Lagrangian
Paria Rashidinejad
Hanlin Zhu
Kunhe Yang
Stuart J. Russell
Jiantao Jiao
OffRL
33
26
0
01 Nov 2022
Going Beyond Linear RL: Sample Efficient Neural Function Approximation
Going Beyond Linear RL: Sample Efficient Neural Function Approximation
Baihe Huang
Kaixuan Huang
Sham Kakade
Jason D. Lee
Qi Lei
Runzhe Wang
Jiaqi Yang
41
8
0
14 Jul 2021
Deep Dynamics Models for Learning Dexterous Manipulation
Deep Dynamics Models for Learning Dexterous Manipulation
Anusha Nagabandi
K. Konolige
Sergey Levine
Vikash Kumar
143
407
0
25 Sep 2019
1