ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.02428
  4. Cited By
EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields
  for Atomistic Simulations

EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations

3 October 2023
Vaibhav Bihani
Utkarsh Pratiush
Sajid Mannan
Tao Du
Zhimin Chen
Santiago Miret
Matthieu Micoulaut
M. Smedskjaer
Sayan Ranu
N. M. A. Krishnan
ArXivPDFHTML

Papers citing "EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations"

9 / 9 papers shown
Title
CrystalFramer: Rethinking the Role of Frames for SE(3)-Invariant Crystal Structure Modeling
Yusei Ito
Tatsunori Taniai
Ryo Igarashi
Yoshitaka Ushiku
K. Ono
57
0
0
04 Mar 2025
Improving the Stability of GNN Force Field Models by Reducing Feature Correlation
Improving the Stability of GNN Force Field Models by Reducing Feature Correlation
Y. Zeng
Wenlong He
Ihor Vasyltsov
Jiaxin Wei
Ying Zhang
Lin Chen
Yuehua Dai
31
0
0
18 Feb 2025
Deconstructing equivariant representations in molecular systems
Deconstructing equivariant representations in molecular systems
Kin Long Kelvin Lee
Mikhail Galkin
Santiago Miret
17
1
0
10 Oct 2024
A Recipe for Charge Density Prediction
A Recipe for Charge Density Prediction
Xiang Fu
Andrew S. Rosen
Kyle Bystrom
Rui Wang
Albert Musaelian
Boris Kozinsky
Tess E. Smidt
Tommi Jaakkola
31
5
0
29 May 2024
TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular
  Simulations
TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular Simulations
Raúl P. Peláez
Guillem Simeon
Raimondas Galvelis
Antonio Mirarchi
Peter K. Eastman
Stefan Doerr
Philipp Thölke
T. Markland
Gianni de Fabritiis
AI4CE
17
12
0
27 Feb 2024
Predicting and Interpreting Energy Barriers of Metallic Glasses with
  Graph Neural Networks
Predicting and Interpreting Energy Barriers of Metallic Glasses with Graph Neural Networks
Haoyu Li
Shichang Zhang
Longwen Tang
Mathieu Bauchy
Yizhou Sun
AI4CE
29
0
0
08 Dec 2023
TensorNet: Cartesian Tensor Representations for Efficient Learning of
  Molecular Potentials
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
Guillem Simeon
Gianni de Fabritiis
11
43
0
10 Jun 2023
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
  Graphs
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
73
142
0
23 Jun 2022
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
183
1,218
0
08 Jan 2021
1