ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.03956
  4. Cited By
Gradient Descent Provably Solves Nonlinear Tomographic Reconstruction

Gradient Descent Provably Solves Nonlinear Tomographic Reconstruction

6 October 2023
Sara Fridovich-Keil
Fabrizio Valdivia
Gordon Wetzstein
Benjamin Recht
Mahdi Soltanolkotabi
ArXivPDFHTML

Papers citing "Gradient Descent Provably Solves Nonlinear Tomographic Reconstruction"

5 / 5 papers shown
Title
A Local Polyak-Lojasiewicz and Descent Lemma of Gradient Descent For Overparametrized Linear Models
A Local Polyak-Lojasiewicz and Descent Lemma of Gradient Descent For Overparametrized Linear Models
Ziqing Xu
Hancheng Min
Salma Tarmoun
Enrique Mallada
Rene Vidal
80
0
0
16 May 2025
Plenoxels: Radiance Fields without Neural Networks
Plenoxels: Radiance Fields without Neural Networks
Alex Yu
Sara Fridovich-Keil
Matthew Tancik
Qinhong Chen
Benjamin Recht
Angjoo Kanazawa
237
1,634
0
09 Dec 2021
Structured signal recovery from quadratic measurements: Breaking sample
  complexity barriers via nonconvex optimization
Structured signal recovery from quadratic measurements: Breaking sample complexity barriers via nonconvex optimization
Mahdi Soltanolkotabi
49
101
0
20 Feb 2017
Isometric sketching of any set via the Restricted Isometry Property
Isometric sketching of any set via the Restricted Isometry Property
Samet Oymak
Benjamin Recht
Mahdi Soltanolkotabi
46
36
0
11 Jun 2015
Phase Retrieval via Wirtinger Flow: Theory and Algorithms
Phase Retrieval via Wirtinger Flow: Theory and Algorithms
Emmanuel Candes
Xiaodong Li
Mahdi Soltanolkotabi
137
1,283
0
03 Jul 2014
1