ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.05327
  4. Cited By
Provable Compositional Generalization for Object-Centric Learning

Provable Compositional Generalization for Object-Centric Learning

9 October 2023
Thaddäus Wiedemer
Jack Brady
Alexander Panfilov
Attila Juhos
Matthias Bethge
Wieland Brendel
    OCL
ArXivPDFHTML

Papers citing "Provable Compositional Generalization for Object-Centric Learning"

8 / 8 papers shown
Title
Are We Done with Object-Centric Learning?
Are We Done with Object-Centric Learning?
Alexander Rubinstein
Ameya Prabhu
Matthias Bethge
Seong Joon Oh
OCL
527
0
0
09 Apr 2025
A Complexity-Based Theory of Compositionality
A Complexity-Based Theory of Compositionality
Eric Elmoznino
Thomas Jiralerspong
Yoshua Bengio
Guillaume Lajoie
CoGe
56
3
0
18 Oct 2024
Next state prediction gives rise to entangled, yet compositional
  representations of objects
Next state prediction gives rise to entangled, yet compositional representations of objects
Tankred Saanum
Luca M. Schulze Buschoff
Peter Dayan
Eric Schulz
OCL
CoGe
OOD
25
1
0
07 Oct 2024
Deciphering the Role of Representation Disentanglement: Investigating
  Compositional Generalization in CLIP Models
Deciphering the Role of Representation Disentanglement: Investigating Compositional Generalization in CLIP Models
Reza Abbasi
M. Rohban
M. Baghshah
CoGe
35
5
0
08 Jul 2024
When does compositional structure yield compositional generalization? A kernel theory
When does compositional structure yield compositional generalization? A kernel theory
Samuel Lippl
Kim Stachenfeld
NAI
CoGe
58
5
0
26 May 2024
Learning to Extrapolate: A Transductive Approach
Learning to Extrapolate: A Transductive Approach
Aviv Netanyahu
Abhishek Gupta
Max Simchowitz
K. Zhang
Pulkit Agrawal
35
15
0
27 Apr 2023
On the Binding Problem in Artificial Neural Networks
On the Binding Problem in Artificial Neural Networks
Klaus Greff
Sjoerd van Steenkiste
Jürgen Schmidhuber
OCL
224
252
0
09 Dec 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
171
311
0
07 Feb 2020
1