Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.06110
Cited By
Grokking as the Transition from Lazy to Rich Training Dynamics
9 October 2023
Tanishq Kumar
Blake Bordelon
Samuel Gershman
C. Pehlevan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Grokking as the Transition from Lazy to Rich Training Dynamics"
8 / 8 papers shown
Title
NeuralGrok: Accelerate Grokking by Neural Gradient Transformation
Xinyu Zhou
Simin Fan
Martin Jaggi
Jie Fu
18
0
0
24 Apr 2025
The Optimization Landscape of SGD Across the Feature Learning Strength
Alexander B. Atanasov
Alexandru Meterez
James B. Simon
C. Pehlevan
43
2
0
06 Oct 2024
Information-Theoretic Progress Measures reveal Grokking is an Emergent Phase Transition
Kenzo Clauw
S. Stramaglia
Daniele Marinazzo
45
3
0
16 Aug 2024
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
160
65
0
27 Oct 2022
Omnigrok: Grokking Beyond Algorithmic Data
Ziming Liu
Eric J. Michaud
Max Tegmark
54
76
0
03 Oct 2022
The Eigenlearning Framework: A Conservation Law Perspective on Kernel Regression and Wide Neural Networks
James B. Simon
Madeline Dickens
Dhruva Karkada
M. DeWeese
37
26
0
08 Oct 2021
Geometric compression of invariant manifolds in neural nets
J. Paccolat
Leonardo Petrini
Mario Geiger
Kevin Tyloo
M. Wyart
MLT
39
34
0
22 Jul 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
C. Pehlevan
131
199
0
07 Feb 2020
1