Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.10649
Cited By
A Computational Framework for Solving Wasserstein Lagrangian Flows
16 October 2023
Kirill Neklyudov
Rob Brekelmans
Alexander Tong
Lazar Atanackovic
Qiang Liu
Alireza Makhzani
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Computational Framework for Solving Wasserstein Lagrangian Flows"
21 / 21 papers shown
Title
PINN-MEP: Continuous Neural Representations for Minimum-Energy Path Discovery in Molecular Systems
Magnus Petersen
Roberto Covino
120
0
0
23 Apr 2025
Generalized Flow Matching for Transition Dynamics Modeling
Haibo Wang
Yuxuan Qiu
Yanze Wang
Rob Brekelmans
Yuanqi Du
29
1
0
19 Oct 2024
Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds
Xingzhi Sun
Danqi Liao
Kincaid MacDonald
Yanlei Zhang
Chen Liu
Guillaume Huguet
Guy Wolf
Ian M. Adelstein
Tim G. J. Rudner
Smita Krishnaswamy
46
3
0
16 Oct 2024
Doob's Lagrangian: A Sample-Efficient Variational Approach to Transition Path Sampling
Yuanqi Du
Michael Plainer
Rob Brekelmans
Chenru Duan
Frank Noé
Carla P. Gomes
Alán Aspuru-Guzik
Kirill Neklyudov
37
9
0
10 Oct 2024
Scalable Simulation-free Entropic Unbalanced Optimal Transport
Jaemoo Choi
Jaewoong Choi
OT
23
0
0
03 Oct 2024
Improving Neural Optimal Transport via Displacement Interpolation
Jaemoo Choi
Yongxin Chen
Jaewoong Choi
OT
43
0
0
03 Oct 2024
Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport
Zhenyi Zhang
Tiejun Li
Peijie Zhou
OT
143
5
0
01 Oct 2024
Score-based Neural Ordinary Differential Equations for Computing Mean Field Control Problems
Mo Zhou
Stanley Osher
Wuchen Li
84
2
0
24 Sep 2024
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Lazar Atanackovic
Xi Zhang
Brandon Amos
Mathieu Blanchette
Leo J. Lee
Yoshua Bengio
Alexander Tong
Kirill Neklyudov
33
5
0
26 Aug 2024
Neural Optimal Transport with Lagrangian Costs
Aram-Alexandre Pooladian
Carles Domingo-Enrich
Ricky T. Q. Chen
Brandon Amos
OT
40
15
0
01 Jun 2024
Efficient Trajectory Inference in Wasserstein Space Using Consecutive Averaging
Amartya Banerjee
Harlin Lee
Nir Sharon
Caroline Moosmüller
42
1
0
30 May 2024
Metric Flow Matching for Smooth Interpolations on the Data Manifold
Kacper Kapusniak
Peter Potaptchik
Teodora Reu
Leo Zhang
Alexander Tong
Michael M. Bronstein
A. Bose
Francesco Di Giovanni
39
11
0
23 May 2024
Dynamic Conditional Optimal Transport through Simulation-Free Flows
Gavin Kerrigan
Giosue Migliorini
Padhraic Smyth
OT
38
10
0
05 Apr 2024
Multisample Flow Matching: Straightening Flows with Minibatch Couplings
Aram-Alexandre Pooladian
Heli Ben-Hamu
Carles Domingo-Enrich
Brandon Amos
Y. Lipman
Ricky T. Q. Chen
60
126
0
28 Apr 2023
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
DiffM
248
261
0
15 Mar 2023
Rectified Flow: A Marginal Preserving Approach to Optimal Transport
Qiang Liu
OT
130
85
0
29 Sep 2022
Riemannian Metric Learning via Optimal Transport
Christopher Scarvelis
Justin Solomon
OT
40
11
0
18 May 2022
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
72
54
0
04 Dec 2021
Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory
T. Chen
Guan-Horng Liu
Evangelos A. Theodorou
DiffM
OT
174
162
0
21 Oct 2021
Towards a mathematical theory of trajectory inference
Hugo Lavenant
Stephen X. Zhang
Young-Heon Kim
Geoffrey Schiebinger
21
40
0
18 Feb 2021
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
175
597
0
22 Sep 2016
1