ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.10971
  4. Cited By
Context-Aware Meta-Learning

Context-Aware Meta-Learning

17 October 2023
Christopher Fifty
Dennis Duan
Ronald G. Junkins
Ehsan Amid
Jurij Leskovec
Christopher Ré
Sebastian Thrun
    LRM
    VLM
    MLLM
ArXivPDFHTML

Papers citing "Context-Aware Meta-Learning"

8 / 8 papers shown
Title
Transforming Game Play: A Comparative Study of DCQN and DTQN
  Architectures in Reinforcement Learning
Transforming Game Play: A Comparative Study of DCQN and DTQN Architectures in Reinforcement Learning
William A. Stigall
43
0
0
14 Oct 2024
Tiny models from tiny data: Textual and null-text inversion for few-shot distillation
Tiny models from tiny data: Textual and null-text inversion for few-shot distillation
Erik Landolsi
Fredrik Kahl
DiffM
42
0
0
05 Jun 2024
Unsupervised Meta-Learning via In-Context Learning
Unsupervised Meta-Learning via In-Context Learning
Anna Vettoruzzo
Lorenzo Braccaioli
Joaquin Vanschoren
M. Nowaczyk
SSL
42
0
0
25 May 2024
Universal Few-shot Learning of Dense Prediction Tasks with Visual Token
  Matching
Universal Few-shot Learning of Dense Prediction Tasks with Visual Token Matching
Donggyun Kim
Jinwoo Kim
Seongwoong Cho
Chong Luo
Seunghoon Hong
VLM
38
23
0
27 Mar 2023
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
283
5,723
0
29 Apr 2021
Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning
Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning
Yinbo Chen
Zhuang Liu
Huijuan Xu
Trevor Darrell
Xiaolong Wang
158
339
0
09 Mar 2020
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
170
634
0
19 Sep 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
237
11,568
0
09 Mar 2017
1