Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.15003
Cited By
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
23 October 2023
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries"
6 / 6 papers shown
Title
Small Transformers Compute Universal Metric Embeddings
Anastasis Kratsios
Valentin Debarnot
Ivan Dokmanić
44
11
0
14 Sep 2022
Heterogeneous manifolds for curvature-aware graph embedding
Francesco Di Giovanni
Giulia Luise
M. Bronstein
49
23
0
02 Feb 2022
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
85
114
0
28 Feb 2021
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
16
29
0
11 Dec 2020
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
163
596
0
22 Sep 2016
1