ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.15003
  4. Cited By
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries

Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries

23 October 2023
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
ArXivPDFHTML

Papers citing "Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries"

6 / 6 papers shown
Title
Small Transformers Compute Universal Metric Embeddings
Small Transformers Compute Universal Metric Embeddings
Anastasis Kratsios
Valentin Debarnot
Ivan Dokmanić
44
11
0
14 Sep 2022
Heterogeneous manifolds for curvature-aware graph embedding
Heterogeneous manifolds for curvature-aware graph embedding
Francesco Di Giovanni
Giulia Luise
M. Bronstein
49
23
0
02 Feb 2022
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
85
114
0
28 Feb 2021
Deep Neural Networks Are Effective At Learning High-Dimensional
  Hilbert-Valued Functions From Limited Data
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
16
29
0
11 Dec 2020
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
163
596
0
22 Sep 2016
1