ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.16076
  4. Cited By
Practical Computational Power of Linear Transformers and Their Recurrent
  and Self-Referential Extensions

Practical Computational Power of Linear Transformers and Their Recurrent and Self-Referential Extensions

24 October 2023
Kazuki Irie
Róbert Csordás
Jürgen Schmidhuber
ArXivPDFHTML

Papers citing "Practical Computational Power of Linear Transformers and Their Recurrent and Self-Referential Extensions"

2 / 2 papers shown
Title
Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues
Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues
Riccardo Grazzi
Julien N. Siems
Jörg K.H. Franke
Arber Zela
Frank Hutter
Massimiliano Pontil
84
10
0
19 Nov 2024
Neural Networks and the Chomsky Hierarchy
Neural Networks and the Chomsky Hierarchy
Grégoire Delétang
Anian Ruoss
Jordi Grau-Moya
Tim Genewein
L. Wenliang
...
Chris Cundy
Marcus Hutter
Shane Legg
Joel Veness
Pedro A. Ortega
UQCV
89
129
0
05 Jul 2022
1