ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.16981
  4. Cited By
Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
  Comprehensive Benchmark

Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A Comprehensive Benchmark

25 October 2023
Lasse Hansen
Nabeel Seedat
M. Schaar
Andrija Petrović
ArXivPDFHTML

Papers citing "Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A Comprehensive Benchmark"

8 / 8 papers shown
Title
A Comprehensive Survey of Synthetic Tabular Data Generation
A Comprehensive Survey of Synthetic Tabular Data Generation
Ruxue Shi
Yili Wang
Mengnan Du
Xu Shen
Xin Wang
30
1
0
23 Apr 2025
Targeted synthetic data generation for tabular data via hardness characterization
Targeted synthetic data generation for tabular data via hardness characterization
Tommaso Ferracci
Leonie Goldmann
Anton Hinel
Francesco Sanna Passino
53
0
0
01 Oct 2024
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity
  Characterization
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
48
51
0
16 Sep 2022
Robin Hood and Matthew Effects: Differential Privacy Has Disparate
  Impact on Synthetic Data
Robin Hood and Matthew Effects: Differential Privacy Has Disparate Impact on Synthetic Data
Georgi Ganev
Bristena Oprisanu
Emiliano De Cristofaro
24
57
0
23 Sep 2021
Conditional Synthetic Data Generation for Robust Machine Learning
  Applications with Limited Pandemic Data
Conditional Synthetic Data Generation for Robust Machine Learning Applications with Limited Pandemic Data
Hari Prasanna Das
Ryan Tran
Japjot Singh
Xiangyu Yue
G. Tison
Alberto L. Sangiovanni-Vincentelli
C. Spanos
OOD
MedIm
50
51
0
14 Sep 2021
MLReal: Bridging the gap between training on synthetic data and real
  data applications in machine learning
MLReal: Bridging the gap between training on synthetic data and real data applications in machine learning
T. Alkhalifah
Hanchen Wang
O. Ovcharenko
OOD
33
63
0
11 Sep 2021
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
  and Auditing Generative Models
How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models
Ahmed Alaa
B. V. Breugel
Evgeny S. Saveliev
M. Schaar
38
135
0
17 Feb 2021
Estimating Example Difficulty Using Variance of Gradients
Estimating Example Difficulty Using Variance of Gradients
Chirag Agarwal
Daniel D'souza
Sara Hooker
190
103
0
26 Aug 2020
1