ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.17491
  4. Cited By
FedPEAT: Convergence of Federated Learning, Parameter-Efficient Fine
  Tuning, and Emulator Assisted Tuning for Artificial Intelligence Foundation
  Models with Mobile Edge Computing

FedPEAT: Convergence of Federated Learning, Parameter-Efficient Fine Tuning, and Emulator Assisted Tuning for Artificial Intelligence Foundation Models with Mobile Edge Computing

26 October 2023
Terence Jie Chua
Wen-li Yu
Junfeng Zhao
Kwok-Yan Lam
    FedML
ArXivPDFHTML

Papers citing "FedPEAT: Convergence of Federated Learning, Parameter-Efficient Fine Tuning, and Emulator Assisted Tuning for Artificial Intelligence Foundation Models with Mobile Edge Computing"

2 / 2 papers shown
Title
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally
  Across Scales and Tasks
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
236
804
0
14 Oct 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,835
0
18 Apr 2021
1