ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.17492
  4. Cited By
Orchestration of Emulator Assisted Mobile Edge Tuning for AI Foundation
  Models: A Multi-Agent Deep Reinforcement Learning Approach

Orchestration of Emulator Assisted Mobile Edge Tuning for AI Foundation Models: A Multi-Agent Deep Reinforcement Learning Approach

26 October 2023
Wen-li Yu
Terence Jie Chua
Junfeng Zhao
ArXivPDFHTML

Papers citing "Orchestration of Emulator Assisted Mobile Edge Tuning for AI Foundation Models: A Multi-Agent Deep Reinforcement Learning Approach"

4 / 4 papers shown
Title
Towards Harnessing the Collaborative Power of Large and Small Models for Domain Tasks
Towards Harnessing the Collaborative Power of Large and Small Models for Domain Tasks
Yang Janet Liu
Bingjie Yan
Tianyuan Zou
Jianqing Zhang
Zixuan Gu
...
J. Li
Xiaozhou Ye
Ye Ouyang
Qiang Yang
Y. Zhang
ALM
77
1
0
24 Apr 2025
PrivTuner with Homomorphic Encryption and LoRA: A P3EFT Scheme for
  Privacy-Preserving Parameter-Efficient Fine-Tuning of AI Foundation Models
PrivTuner with Homomorphic Encryption and LoRA: A P3EFT Scheme for Privacy-Preserving Parameter-Efficient Fine-Tuning of AI Foundation Models
Yang Li
Wenhan Yu
Jun Zhao
16
1
0
01 Oct 2024
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally
  Across Scales and Tasks
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
236
780
0
14 Oct 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
278
3,835
0
18 Apr 2021
1