Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2310.19035
Cited By
Does Invariant Graph Learning via Environment Augmentation Learn Invariance?
Neural Information Processing Systems (NeurIPS), 2023
29 October 2023
Yongqiang Chen
Yatao Bian
Kaiwen Zhou
Binghui Xie
Bo Han
James Cheng
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Does Invariant Graph Learning via Environment Augmentation Learn Invariance?"
28 / 28 papers shown
Title
Quantifying Distributional Invariance in Causal Subgraph for IRM-Free Graph Generalization
Yang Qiu
Yixiong Zou
Jun Wang
Wei Liu
Xiangyu Fu
R. Li
OOD
121
1
0
23 Oct 2025
Invariant Graph Transformer for Out-of-Distribution Generalization
Tianyin Liao
Ziwei Zhang
Yufei Sun
Chunyu Hu
Jianxin Li
OOD
122
1
0
01 Aug 2025
Out-of-Distribution Graph Models Merging
Yidi Wang
Jiawei Gu
pei Xiaobing
Xubin Zheng
Xiao Luo
Pengyang Wang
Ziyue Qiao
MoMe
OODD
296
0
0
04 Jun 2025
Data Heterogeneity Modeling for Trustworthy Machine Learning
Tianyu Wang
Peng Cui
205
1
0
01 Jun 2025
Learning Repetition-Invariant Representations for Polymer Informatics
Yihan Zhu
Gang Liu
Eric Inae
Tengfei Luo
Meng Jiang
264
0
0
15 May 2025
Soft causal learning for generalized molecule property prediction: An environment perspective
Limin Li
Kuo Yang
Wenjie Du
Pengkun Wang
Zhengyang Zhou
Yang Wang
OOD
AI4CE
187
1
0
07 May 2025
Out-of-Distribution Generalization on Graphs via Progressive Inference
AAAI Conference on Artificial Intelligence (AAAI), 2025
Yiming Xu
Bin Shi
Zhen Peng
Huixiang Liu
Bo Dong
Chen Chen
OOD
AI4CE
294
0
0
04 Mar 2025
Generative Risk Minimization for Out-of-Distribution Generalization on Graphs
Song Wang
Zhen Tan
Yaochen Zhu
Chuxu Zhang
Wenlin Yao
OOD
349
0
0
11 Feb 2025
BrainOOD: Out-of-distribution Generalizable Brain Network Analysis
International Conference on Learning Representations (ICLR), 2025
Jiaxing Xu
Yongqiang Chen
Xia Dong
Mengcheng Lan
Tiancheng Huang
Qingtian Bian
James Cheng
Yiping Ke
OOD
367
5
0
02 Feb 2025
Enhancing Distribution and Label Consistency for Graph Out-of-Distribution Generalization
Industrial Conference on Data Mining (IDM), 2024
Song Wang
Xiaodong Yang
Rashidul Islam
Huiyuan Chen
Minghua Xu
Jundong Li
Yiwei Cai
OODD
379
4
0
07 Jan 2025
Scale Invariance of Graph Neural Networks
Qin Jiang
Chengjia Wang
Michael Lones
Wei Pang
GNN
302
0
0
28 Nov 2024
Subgraph Aggregation for Out-of-Distribution Generalization on Graphs
AAAI Conference on Artificial Intelligence (AAAI), 2024
Bowen Liu
Haoyang Li
Shuning Wang
Shuo Nie
Shanghang Zhang
OODD
CML
257
1
0
29 Oct 2024
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Kexin Zhang
Shuhan Liu
Song Wang
Weili Shi
Chen Chen
Pan Li
Sheng Li
Jundong Li
Kaize Ding
OOD
321
9
0
25 Oct 2024
Score-based Conditional Out-of-Distribution Augmentation for Graph Covariate Shift
Bohan Wang
Yurui Chang
Lu Lin
Lu Lin
OODD
OOD
310
0
0
23 Oct 2024
Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
The Web Conference (WWW), 2024
Jinluan Yang
Ruihao Zhang
Teng Xiao
Wenqiao Zhang
Yong Lin
Kun Kuang
389
7
0
18 Aug 2024
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization
Wenyu Mao
Jiancan Wu
Haoyang Liu
Yongduo Sui
Xiang Wang
OOD
361
5
0
03 Aug 2024
Unifying Invariant and Variant Features for Graph Out-of-Distribution via Probability of Necessity and Sufficiency
Xuexin Chen
Ruichu Cai
Kaitao Zheng
Zhifan Jiang
Zhengting Huang
Zhifeng Hao
Zijian Li
265
0
0
21 Jul 2024
Improving Graph Out-of-distribution Generalization Beyond Causality
Can Xu
Yao Cheng
Jianxiang Yu
Haosen Wang
Jingsong Lv
Yao Liu
Xiang Li
OOD
386
0
0
14 Jul 2024
Empowering Graph Invariance Learning with Deep Spurious Infomax
Tianjun Yao
Yongqiang Chen
Zhenhao Chen
Kai Hu
Zhiqiang Shen
Kun Zhang
OOD
226
15
0
13 Jul 2024
How Interpretable Are Interpretable Graph Neural Networks?
Yongqiang Chen
Yatao Bian
Bo Han
James Cheng
178
13
0
12 Jun 2024
Improving out-of-distribution generalization in graphs via hierarchical semantic environments
Yinhua Piao
Sangseon Lee
Yijingxiu Lu
Sun Kim
OOD
221
6
0
04 Mar 2024
Pairwise Alignment Improves Graph Domain Adaptation
Shikun Liu
Deyu Zou
Han Zhao
Pan Li
OOD
328
20
0
02 Mar 2024
Unifying Invariance and Spuriousity for Graph Out-of-Distribution via Probability of Necessity and Sufficiency
Xuexin Chen
Ruichu Cai
Kaitao Zheng
Zhifan Jiang
Zhengting Huang
Zhifeng Hao
Zijian Li
159
2
0
14 Feb 2024
Enhancing Evolving Domain Generalization through Dynamic Latent Representations
AAAI Conference on Artificial Intelligence (AAAI), 2024
Binghui Xie
Yongqiang Chen
Jiaqi Wang
Kaiwen Zhou
Bo Han
Wei Meng
James Cheng
221
8
0
16 Jan 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
439
9
0
19 Dec 2023
Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel
International Conference on Learning Representations (ICLR), 2023
Xuan Li
Zhanke Zhou
Jiangchao Yao
Yu Rong
Jun Liu
Bo Han
258
11
0
02 Nov 2023
Discovering environments with XRM
International Conference on Machine Learning (ICML), 2023
Mohammad Pezeshki
Diane Bouchacourt
Mark Ibrahim
Jimuyang Zhang
Pascal Vincent
David Lopez-Paz
194
21
0
28 Sep 2023
Joint Learning of Label and Environment Causal Independence for Graph Out-of-Distribution Generalization
Neural Information Processing Systems (NeurIPS), 2023
Shurui Gui
Meng Liu
Xiner Li
Youzhi Luo
Shuiwang Ji
CML
OOD
501
41
0
01 Jun 2023
1