Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.19263
Cited By
A Metadata-Driven Approach to Understand Graph Neural Networks
30 October 2023
Tinghong Li
Qiaozhu Mei
Jiaqi Ma
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Metadata-Driven Approach to Understand Graph Neural Networks"
6 / 6 papers shown
Title
How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark
Ruizhong Qiu
Weiliang Will Zeng
Hanghang Tong
James Ezick
Christopher Lott
86
15
0
20 Feb 2025
Uplifting Message Passing Neural Network with Graph Original Information
Xiao Liu
Lijun Zhang
Hui Guan
GNN
13
1
0
08 Oct 2022
GraphWorld: Fake Graphs Bring Real Insights for GNNs
John Palowitch
Anton Tsitsulin
Brandon Mayer
Bryan Perozzi
GNN
183
68
0
28 Feb 2022
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
Contextual Stochastic Block Models
Y. Deshpande
Andrea Montanari
Elchanan Mossel
S. Sen
98
151
0
23 Jul 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
1