ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.19263
  4. Cited By
A Metadata-Driven Approach to Understand Graph Neural Networks

A Metadata-Driven Approach to Understand Graph Neural Networks

30 October 2023
Tinghong Li
Qiaozhu Mei
Jiaqi Ma
    AI4CE
ArXivPDFHTML

Papers citing "A Metadata-Driven Approach to Understand Graph Neural Networks"

6 / 6 papers shown
Title
How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark
How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark
Ruizhong Qiu
Weiliang Will Zeng
Hanghang Tong
James Ezick
Christopher Lott
86
15
0
20 Feb 2025
Uplifting Message Passing Neural Network with Graph Original Information
Uplifting Message Passing Neural Network with Graph Original Information
Xiao Liu
Lijun Zhang
Hui Guan
GNN
13
1
0
08 Oct 2022
GraphWorld: Fake Graphs Bring Real Insights for GNNs
GraphWorld: Fake Graphs Bring Real Insights for GNNs
John Palowitch
Anton Tsitsulin
Brandon Mayer
Bryan Perozzi
GNN
183
68
0
28 Feb 2022
Geom-GCN: Geometric Graph Convolutional Networks
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
Contextual Stochastic Block Models
Contextual Stochastic Block Models
Y. Deshpande
Andrea Montanari
Elchanan Mossel
S. Sen
98
151
0
23 Jul 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
1